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Preface

Morgan Kaufmann is pleased to present ntarial from a preliminary draft of Parallel Computer Architectur e; the
material is (c) Copyright 1997 Morgan Kaufmann Publishers. This material may not be used or distibuted for any
commercial purpose without the express written consent of Morgan Kaufmann Publishers. Please note that this
material is a draft of forthcoming publication, and as such neither Mogan Kaufmann nor the authors can be held
liable for changes or alterations in the final edition.

Motivation for the Book

Paallel computing is a critical component of the computingetogy of the 90s, and it is Iy

to have as much impact @er the next twenty gas as micoprocess@ hae had oer the past
twenty. Indeed the two tebnologes are sely linked, as the eolution of highly intgrated
microprocessa and memory chips is makinguftiprocessor systems ireasingy atractive.

Already multiprocesscs represent the high pesfmance end of almostvery segment of the
computing maket, from the fastest supssmputersto dgatmental compute seers,to the indi-

vidual desktop. In the past, computesndos emplyed a ange of tetinologes to povide

increasing pedrmance across their product lif@day,the same ste-of-the-at microprocessor
is used throughouffo obtain a significantange of perbrmance the simplest pproad is to

increase the number of gessorsand the economies of scale makes tkiseenel attractive.

Very soon, several processors will fit on a single chip.
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Although parallel computing has a long aighracademic histgr the close coupling with com-
modity tedcinology has fundamentallyhanged the disciplineThe emphasis on radicalchitec-
tures and exotic témology has gven way to quantitéive analysis and careful eingeing trade-
offs. Our goal in writing this book is to equip designers of the gimgrclass of mltiprocessor
systemsfrom modestly parallel personal computers to mvegsiparallel superomputerswith
an understanding of the fundamentathétectual issues and thevailatle techniques dr
addessing design ade-ofs. At the same timeve hope to pvide designers of softave systems
for these machines with an understanding of thedylilirections of achitectual evolution and
the forces that will determine the specific path that hardware designs will follow.

The most exciting recent d@elopment in parallel computerchitectue is the covergence of ta-
ditionally dispaete gproachespamely shad-memorymessge-passingsSIMD, and déaflow,
on a common machine stture This is diven patly by common teltnologcal and economic
forces,and patly by a better understanding of parallel saftev This covergence allows us to
focus on the werriding architectual issues and to delop a common &mewok in which to
undestand and\aluae achitecturl trade-ofs. Moreover,parallel softvare has maured to the
point where the popular parallel pgramming models arevailade on a wide ange of madines
and meaningful bemenaks exists.This mauring of the field makes it possible to unidée a
quantitative,as well as qualitve study of hadware/softwag interactions. Inéct, it demands
such an pproad. The book bllows a set of issues that are critical to all parallehigectues —
communicéion laency, commnunicaion bandavidth, and coodinaion of coopeative work -
acmoss the full ange of modern designs. It describes the set of techniqadatde in hadware
and in softvare to adiress each issue andpéores how the arious techniques interact. Case
studies povide a concrete illusttion of the gneal principles and demonste specific inteac-
tions between mechanisms.

Our final motvation comes from the ctant lack of an adequate text book for our own courses a
Stanford Berkeley,and Princeton. Many existing text bookseothe mégerial in a cusoly fash-

ion, summarizing &rious achitectues and esearh results,but not analyzing them in gén.
Othess focus on specific pjects,but fail to ecogniz the principles that carover to altenative
approabes.The esearb repots in the area pride sizdle body of empirical da, but it has not
yet been distilled into a coherent piauBy focusing on the salient issues in the context of the
technologcal corvergencerather than theich and \aried history that brought us to this point,
we hope to provide a deeper and more coherent understanding of the field.

Intended Audience

We beliere the subject matter of this book is coreemal and should beetewant to gadude stu-

dents and practicing eimges in the fields of computerahitecture systems softare,and gpli-
caions. The elevance for computer ehitects is olious, given the gowing importance of
multiprocessa. Chip designers must understankdaconstitutes a viade building Bock for
multiprocessor systems, while computer system designers must understand how bese to utiliz
modern microprocessor and memory technology in building multiprocessors.

Systems softare, including opegting systems, compilsr programming languges, run-time
systems performance dbuggng tools, will need to attess new issues and willguide nev
oppotunities in parallel computer$hus,an understanding of theaution and thedrces guid-
ing that eolution is critical. Reseahes in compilers and pgramming languges hae
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addessed aspects of parallel computing for some timezeMer,the new covergence with com-
modity tedinology suggests that these aspects may need teé@@amined and perhapsdmwssed
in very generl terms.The traditional boundaries betweendware,opegting system, and user
program are also shifting in the context of parallel compytwigere comnunication,sdhedul-
ing, sharing, and resource management are intrinsic to the program.

Applications aeas,such as computeraphics and naltimedia, scientific computingcomputer
aided design, decision support and transactiatgssing,are all likely to see a #gmendous
transforméion as a result of the vast computingveo availale at low cost through parallel com-
puting However, developing parallel pplicaions that are abust and povide good speed-up
across curent and future mitiprocessos is a ballengng task, andequires a deep undsand-
ing of forces diving parallel computerd’he book seeks to gride this undestanding,but also
to stinulate the &chang between thepmlications fields and computerditecture,so that bet-
ter achitectues can be designed --- those that make tbgrmming task easier and pemf
mance more robust.

Organization of the Book

The book is ayanizd into twelve chaptes. Chapter 1 kgins with the motiation why pallel
architectues are ingitable based on témology, architecture,and @plications trends. It then
briefly introduces the derse multiprocessor athitectues we find today (shed-memorymes-
sage-passinglata paallel, daaflow, and systolic), and it shows how thehrology and achitec-
tural trends tell a strong story of a@rgence in the &ld. The cowergence does not mean the end
to innovation, but on the conary, it implies that we will now see a time afpid progress in the
field, as designers start talking each otherather thanpast each other. Gen this coxergence,
the last portion of thehgpter introduces the fundamaental design issues fdtiprocessors:
naming, syndronization,latency,and bandwidthThese four issueofm an unddying theme
throughout the rest of this booKhe tapter ends with a historical prective,poviding a
glimpse into the diverse and rich history of the field.

Chapter 2 povides a brief introduction to the process of parallegmming and \Wat are the
basic components of populamgramming models. It is intended to ensure that the reader has a
clear understanding of tdware/softwee trade-offs,as well as Wa aspects of pesfmance can

be adiressed through ehitectual means and k& aspects mch be adressed either by the com-
piler or the pogrammer in poviding to the hadware a well designed parallelggram.The anal-

ogy in sequential computing is thatchitectue cannot sinsfom an O(n2) algrithm into an
O(nlogn) algorithm, but it can impove the aerage access time for common memoeference
pattens.The brief discussion of pgramming issues is not Ky to turn you into anxgett par

allel pogrammerjf you are not akady,but it will familiarize you with the issues anchet pro-
grams look like in arious pogramming models. Chapter 3 outlines the basic techniques used in
programming for perdrmance and presents a collection pplication case studies, that seras

a basis for quantitative evaluation of design trade-offs throughout the book.

Chapter 4 takes up thehallengng task of perdrming a solid empirical\alugion of design
trade-ofs. Architectual evaluaion is difiicult even for modern uni-mtessos wher we typi-
cally look at \arigtions in pipeline design or memory system desigairest a fked set of po-
grams. In parallel @hitectue we hae many more dgees of freedom to xelore, the
interactions between aspects of the design are mofeund,the interactions between kiarare
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and softvare are more significant and of a wider scope elnegal we are looking at pesfmance
as the machine and theogram scaleThere is no vey to scale one without the otheraenple.
Chapter 3 discusses how scaling interacts witfious achitectual paametes and presents a set
of benchmarks that are used throughout the later chapters.

Chaptes 5 and 6 mvide a complete understanding of the bus-basatiprocessorsSMPs, tha
form the bead-and-btter of modern commercial machinesytwed the desktop, and/en to
some extent on the desktop. Chapter 5 presents gleallalesign of‘'snooping” bus potocols
which ensure that autortieally replicaed data is conherent across multiple cachiels. chapter
provides an important discussion of memory consistency modéishwallows us to come to
terms with wha shared memoryeally means to algrithm designers. It discusses the spectrum of
design options and how machines are optimizginat typical efeence pt#tems occuring in
user pograms and in the opating system. Gien this conceptual understanding of SMPs, it
reflects on implications for parallel programming.

Chapter 6 examines the physical design of bus-basdtiprocessas. Itdigs down into the eirg
neeing issues that arise in supporting modern apoocessa@ with rrultilevel caches on moder
busseswhich are highly pipelined. Although some of thisteml is contained in more casual
treagments of naltiprocessor ahitecture the pesentéion here povides a ery complete under
standing of the design issues in trégime It is especially important because these small-scale
designs érm a building lock for large-scale designs and because many of the concepts will
reappear later in the book on a larger scale with a broader set of concerns.

Chapter 7 presents the tware oganizaion and achitectue of a ange of machines that er
scalalte to lage or \ety large confguraions.The key organizaional concept is that of a netwk
transactionanalagous to the bus @ansactionwhich is the fundamental jonitive for the designs
in Chapters 5 and 6. Haever,in large scale machines the globaldrmhaion and global arbi&-
tion of small-scale designs is losiso, a lage number of transactions can be outstandivig.
shawv how cowentional pogramming models aresalized in terms of netark transactions and
then study a spectrum of important design pointgamized according to thevel of direct hadl-
ware intepretdion of the netwrk transactionjncluding detailed case studies of important com-
mercial machines.

Chapter 8 puts the results of theepious daptes tagether to demonsdte how to ealize a global
shaed physical adress space with automatieplicaion on a lage scale. It ppvides a complete
treatment of directory based cache coherence protocols and hardware design alternatives.

Chapter 9 examines a spectrum of ai@ives that push the boundaries of possible\are/
softwae trade-ofs to obtain higher pesfmance,to reduce halware compleity, or both. It
looks at elaxed memory consistency models, lca®@ny memory achitecturesand softvare
based cache colecy This mderal is curently in the transitional phase from academic
research to commercial product at the time of writing.

Chapter 10 adresses the design of &b@ high-perbrmance commnicaion networks, which
undeties all the lage scale machines discussed ievipus dhaptersput was dedrred in order to
complete our understanding of theopessormemory system, and netvk interface design
which diive these netarks. The capter builds a gnerl framewok for understanding here
hardwae costs, tinser delys, and bandwidthestictions arise in netarks. We then look at a
variety of trade-ofs in routing tebniques,switch design, and interconnection topgjowith
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respect to these cost-pemhance metricsThese tade-ofs are made concrete through case stud-
ies of recent designs.

Given the éundaion estélished by the fist ten biaptersChapter 11 examines a set afss-cut-
ting issues imolved in toleating significant commnicaion delays without impeding penf
mance The techniques essentially exploit two basipatalities: overlgpping comnunication
with useful computation and pipelinng the coomitaion of a volume of datalhe simplest of
these are essentially bullatisferswhich pipeline the meement of a lage regular sequence of
daa items and often can be off-loaded from thecpssarThe other techniques attempt to hide
the laeng incured in collections of individual loads and stoiite latencies are hidderyb
exploiting weak consistency modelshish recogniz that odeling is cowey by only a small set
of the accesses to shared memory incggiam. Read latencies are hidden by implicit xplieit
prefetdiing of daa, or by look-ahead techniques in modeymamicaly scheduled mrcessors.
The dapter povides a thoroughxamindion of these alteratives,the impact on compiten
techniquesand quantitéve evaluaion of the efectiveness. mally, Chapter 12 examines the
trends in tebnology,architecture software systems andpalicaions that are ligly to shape eo-
lution of the field.

We beliee parallel computer ehitectue is an exciting core field whose importancersagng;

it has eated a point of ntarity that a textbook makes senseotf a ich diversity of ideas and
approacheghere is now a @émdic corvergence happening in theefd. It is time to go bgond
survegying the machine landspa,to an understanding of fundamental design principleshae
intimately paticipated in the covergence of the field; this text arises from thipetience of ous

and we hope it conveys some of the excitement that we feel for this dynamic and growing area.
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material is a draft of forthcoming publication, and as such neither Mogan Kaufmann nor the authors can be held
liable for changes or alterations in the final edition.

11

Introduction

We hare enjyed an &plosive gowth in perbrmance and qability of computer systemsof
over a decadelhe theme of this dmadic success story is the\ahce of the undbring VLSI
technology,which allows lager and lager rumbes of components to fit on a chip andak
rates to incease The plot is one of computerdnitecture which transldes the aw potential of
the tetinology into geder perbrmance and expandedpahility of the computer systenThe
leading daracter is parallelism. A Iger volume of esouces means that more ogions can be
done at oncein parallel. Rrallel computer athitectue is about ajanizing theseasouces so
tha they work well together Computers of all types @ harnessed parallelism more and enor
effectively to gain perfrmance from theaw tednology,and the leel at which parallelism is
exIploited continues toise The other ky chamacter is staxge The data that is opaied on at an
ewer faster ate must be held soméere in the makine Thus,the story of parallel processing is
deepy intertwined with data locality and comumicaion. The computer @&hitect must sort out
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these bangng relaionships to design theatous levels of a computer system so as to max@miz
performance and mgrammaility within the limits imposed by témology and cost at any par
ticular time.

Parllelism is a scinding pespectie from which to understand computerchitecture because

it applies at all leels of design, it interacts with essentially all othehéectual concgts,and it
presents a unique dependence on the lyidgrtedinology In paticular, the basic issues of
locality, bandvidth, latency, and synbronizdion arise at many \els of the design of paltel
computer systems. The trade-offs must be resolved in the context of real application workloads.

Parllel computer arhitecture,like any other aspect of designyatves elements ofofm and
function. These elements are captured nicely in the following definition[AG089].

A parallel computelis a collection of processing elements that cagipeand commnicate
to solve large problems fast.

However, this simple definition raises many questions. Howdaa collection are we talking
about? How pwerful are the individual processing elements and can the number be increased in
a staight-forwad manner? How do they cooper and commnicae? How are datagnsmitted
between pocessorswha sort of interconnection is pvided,and vha opegtions are wailable
to sequence the actions Gad out on diferent pocessas?Wha are the pgmitive astractions
tha the hadware and softwre provide to the popgrammer? And fially, how does it all ginslate
into perbrmance? As we lgin to ansver these questions, we will see that small, matgéeand
vely large collections of processing elements eaale important roles to fill in modern comput-
ing. Thus,it is important to understand parallel machine design across thefsoalghe small
to the \ery large Therte are design issues thatpdy throughout the scale of @dielism,and oth-
ers that are mostggmane to a particulaegime,such as within ahgp, within a b, or on a ery
large madiine It is safe to say that parallel machines occupicta and dverse design space
This diversity makes the arexa@iting, but also means that it is important that weetigp a tear
framework in which to understand the many design alternatives.

Parllel achitectue is itself aapidly chandng area. Histacally, parallel machines ke demon-
straed innwative oganizaional stucturesoften tied to particular pgraming models, as étni-
tects sought to obtain the ultimate in periance out of aigen tetinology In many cases,
radical oganizdions were justified on the @unds that achnces in the base tewlogy would
eventualy run out of steanilhese dire predictions appear tovddeen verstatedas Iaic den-
sities and witching speeds k& continued to immve and more modest parallelism has been
employed at laver levels to sustain continued imgement in processor perinance Nonethe-
less, application demand for computational penfnance continues to outpacéav individual
processa@ can delier, and nultiprocessor systems occupy an gwmsingy important place in
mainsteam computingWha has tiangd is the neelty of these parallel ahitectues. En
large-scale parallel machines today are built out of the same basic component&siations
and personal computerShey are subject to the same @mgping principles and cost-penf-
mance tade-ofs. Moreover,to yield the utmost in pasfmancea parallel machine muskteact
the full perbrmance potential of its individual componentsius,an understanding of moater
pamllel acchitectues must include an in-deptrettiment of engeeing trade-offs,not just a
descriptive taxonomy of possible machine structures.

Parllel architectues will play an inagasingy central role in indrmaion processingThis viev
is based not so mth on the assumption that individual processorgrardnce will soonead a
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plateaubut rther on the estimation that the nextdeof system design, theuttiprocessor leel,
will become inceasingy attractive with increases in chip densifjhe goal of this book is to
articulate the principles of computer design at the multiprocessor Migebxamine the design
issues present for each of the system components — memory systerass@rsand netwrks —
and the elaionships between these components.ep &spect is understanding the division of
responsibilities between tdware and softare in e/olving parallel machines. Undganding
this diision, requires familiarity with the requirements that parallel pgrams place on the
machine and the interaction of machine design and the practice of parallel programming.

The process of learning computeckitectue is frequenty likened to peeling an onion, and this
analoy is even more ppropridge for parallel computer ehitecture At each lgel of undestand-
ing we find a complete whole with many interactiragdts,including the suicture of the
machine the dstractions it pesentsthe tetinology it rests upon, the softme that eercises it,
and the models that describe its perfance However,if we dig deeper into any of thesacets
we discoer another whole iger of design and a new set of interactiofise wholistic, mary
level ngure of parallel computer ahitectue makes the fieldhallendng to learn andtalleng-
ing to present. Something of the layer by layer understanding is unavoidable.

This introductol chapter presents the ‘outer skin’ of parallel computeh#ecture It first out-
lines the reasonshy we expect parallel machine design to becomegsee from desktop
madines to supeomputes. We look at the tdmological,architectural,and economic énds
tha have led to the cuent state of computerchitectue and that pvide the basis for anticipa

ing future parallel arhitectues. Sectiori.2 focuses on theofces that hee brought about the
dramdic rate of processor pasfmance adance and theestructuing of the entire computing
industy around commodity mioprocessa@. These 6rces include the insiable goplication
demand for computing peer, the continued immvements in the density andvég of integration

in VLSI chips, and the utilization of parallelism at higher and higher levels of the architecture.

We then take a quick look at the spectrum of importasttiectual styles vinich gve the feld
sud a fich history and coniioute to the modern understanding of parallel machinébin this
diversity of design, a common set of design principles aadetiofs aise, driven by the same
adwances in the undigting tecinology These brces areapidly leading to a corergence in the
field, which forms the emphasis of this book. SectioB suveys traditional parallel mdwnes,
including shared-memorymessage-passing, single-instruction-multiple-data, systoliaysr
and dataflow and illustetes the difierent ways that they adress common ahitectual issues.
The discussion illusttes the dependence of parallethdtectue on the undéying tedanology
and,more impotantly, demonsttes the covergence that has come about with the dominance of
MICroprocessors.

Building on this comergencejn Sectionl.4 we examine the fundamental design issues that cut
acioss parallel mdgnes:wha can be named at the machineeleas a basis for commication

and coodination,wha is the laeng/ or time equired to perbrm these opeations,and wha is

the bandwidth orerall rate at vhich they can be pesfmed This shift from conceptual stc-

ture to perbrmance componentsqides a famewok for quantitaive, rather than mealy quali-
tative, study of parallel computer architecture.

With this initial, broad understanding of parallel computeh#ectue in place the bllowing
chaptes dig deeper into its technical substance. Chapter 2 delves intoutteistand equire-
ments of parallel mgrams to povide a basis for understanding the interaction betweeilglar
architectue and aplicaions. Chapter 3 builds ad@dmewok for evaluging design decisions in
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tems of gplicaion requittments and pesfmance measurements. Chapter 4 is a completg stud
of parallel computer ahitectue at the limited scale that is widely emy#d in commercial -
tiprocessm — a éw processas to a éw tens of pocessas. The concepts and stritures into-
duced at this scaleifm the building bocks for more ggressie lage scale designs @sented
over the next five chapters.

1.2 Why Parallel Architecture

Computer achitecture tedinology,and gplicaions eolve tayether and hae \ery strong inter
actions. Rrallel computer arhitectue is no &ception. A new dimension is added to the design
space — the number ofquessas — and the design iwen more stingly driven by the demand
for perbrmance at acggalde cost.Whatewer the perdrmance of a single processor atizeg
time, higher perbrmance can, in prciple, be atieved by utilizing many such pcesscs. Hav
mud additional pedrmance is gained and ahé additional cost depends on a numberaaf f
tors, which we will explore throughout the book.

To better understand this indetion, let us consider the permance baracteistics of the po-
cessor building locks. Figure 1-1t illustrates the gowth in processor pesfmance wer time br
seveal classes of computgHeb91]. The dashed linesepresent a nae etrapoladion of the
trends. Although one should be careful iavding sharp quantitave conclusions from such lim-
ited data, the figure suggests several valuable observations, discussed below.

First, the perbrmance of the highly intgated,single-chip CMOS mi@aprocessor is steadil
increasing and is surpassing thegkar more &pensie altenatives. Micioprocessor pedrmance
has been imving at a ate of more than 50% peegr The adantags of using small, ing@en-
sive, low pawer, mass produced pcessaos as the building Ibcks for computer systems with
mary processas are intuitvely clear However, until recenty the perbrmance of the mrcessor
best suited to parallel @ritectue was far behind that of the fastest single processor syBhésn.
is no longer so. Although parallel machineséhdeen built at atious scales since the éast
days of computingthe gproad is more viale today thanwer bebre,because the basicques-
sor building block is better suited to the job.

The second and perhaps more fundamental edigenr is that bange,even damdic change,is

the norm in computer @hnitecture The continuing process ohang has pofound implicgions

for the study of computer @hritecture because we need to understand not only how thirgs ar
but how they might wlve, and why. Change is one of thesk challenges in writing this book,
and one of thedy motivations. Rarallel computer athitectue has mared to the point were it
needs to be studied from a basis ofieeging principles and quantiiae evalugion of perbr-
mance and costhese are rooted in a body atfs,measuementsand designs of real maioes.

1. The figure is dewn from an influential 1991 paper that sought to explain tamdic changes
taking place in the computing indugtdeJ91] The metric of pedrmance is a bit itky when
reading across such amge of time and m#et segmentThe study daws data from gneral
pumpose benemarks,such as the SPEC bémoak that is widely used to assess perfance on
technical computing pplications[HeR90]. After pulication, microprocessa continued to &ck
the pediction, while mainframes and sum@mputes went through tremendous crises and
emerged using multiple CMOS microprocessors in their market niche.
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Figure 1-1Performance trends over time of micro, mini, mainframe and supercomputer processors.[HeJo

Perfomance of miaoprocessa has been increasing ataterof neally 50% per year since the mid 80’s. Mora-tr
ditional mainframe and supercomputer perfance has been increasing asti& iof rou%rh#nzs% per gar As a
result we are seeing the processor that is best suited to padiigeue become the p ance leader asel.

Unfortunately,the existing data and designs are neciégsapzen in time and will become
dated as the field pgressesWe hare elected to present hard data and examine rediinesc
throughout the book in thefm of a“late 1990s” tebnologcal snapshot in order to retain this
grounding We stongly believe that the methods of/@uaion undelying the analysis of con-
crete design &rde-ofs transcend thehconolodcal and tebnologcal reference point of the book.

The“late 1990s” happens to be atiaularly interesting snashot,because we are in the midst of
a damdic technologcal realignment as the single-chip n@iprocessor is poised to domiea
evel sector of computingand as parallel computing takes hold in many areas of neanstr
computing Of couse,the pevalence of bange sugests that one should be cautioustragpo-
lating tovard the futue. In the remainder of this section, we examine morelgdbe forces and
trends that areiging parallel achitectues an inaeasingy important role throughout the com-
puting field and pushing parallel computing into the mainstr&enook frst at the pplication
demand for increased pernance and then at the unigémg tedinologcal and achitectural
trends that sive to meet these demantige see that parallelism is inlestly atractive as com-
puteis become more highly irgeated,and that it is being exploited at ieasingy high levels of
the design. fRally, we look at the role of parallelism in the machines at éng high end of the
performance spectrum.

1.2.1 Application Trends

The demand foner geaer gplicaion perbrmance is a familiarefatue of every aspect of com-
puting Advances in halware caability enable new gplicaion functionality which grows in
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significance and placesen geaer demands on thedritectureand so onThis g/cle diives the
tremendous ongoing design, @mepering, and manfactuing efort undelying the sustained
exponential pedrmance increase in mmprocessor pedrmance It drives parallel ahitecture
ewven hader, since parallel ahitectue focuses on the most demanding of thggaiations.
With a 50% annual imprement in processor perimancea parallel machine of a hundreapr
cessos can be vieed as poviding to gplications the computing peer that will be widely eail-

able ten years in the future, whereas a thousand processors reflects nearly a twenty year horizon.

Application demand also leads computendos to povide a ange of models with inaasing
performance and capacity atquressive} increased cosfThe lagest volume of machines and
gredest number of users are at the low,emdereas the most demandingpdications are seed
by the high end. One fefct of this“platform pyramid” is that the prssue for increased peot-
mance is gedest at the high-end and igested by an important minority of thepglications.
Prior to the micoprocessor &, greder perbrmance was obtained through exotic circuitteal-
ogies and machine ganizdions. Today, to obtain peidrmance signifiantly greaer than the
state-of-the-drmicroprocessorthe pimary option is multiple ppcessorsand the most demand-
ing goplicaions are written as parallelggrams.Thus, parallel achitectues and parallelppli-
cations are subject to the most acute demands for greater performance.

A key reference point for both the ehitect and the @plication developer is how the use of v
lelism impoves the pedrmance of the gplication. We may define thepeedumn p pocessors
as

Performancép processors

Speedugp processop= Performanc¢ 1 processor

(EQ 1.1)

For a singlefixed poblem,the perbrmance of the machine on theplem is simply theecipro-
cal of the time to complete the problem, so we have the following important special case:

Time(1 processQr
Time(p processors’

Speedup,.q pmmen(p processors = (EQ 1.2)

Scientific and Engineering Computing

The direct reliance on increasingvéés of perbrmance is well eshiished in a number of
endeavorsbut is perhaps mosppaent in the field of computational science andieeering.
Basically,computers are used to sifete physical phenomena that are impossibleety wostly

to obseve through empirical meansypical examples include modeling globdihtate change
over long peiods, the &olution of calaxies,the atomic strcture of maerials,the eficiengy of
comlustion with an erige, the fow of air oser surfaces ofehicles,the damge due to impacts,
and the behavior of microscopic electronic devices. Computational modeling allowgtlin-de
anayses to be pesfmed teapy on hypothetical designs through computerdation. A direct
correspondence can beadin between leels of computational pesfmance and the pblems
tha can be studied through gihation. Figure 1-2 summaizes the 1993 findings of the Commit-
tee on Pisical, Mathematical,and Engneeing Sciences of theetleal Office of Science and
Technoloy Policy[OST93]. It indicates the computationate and staxge capacity equired to
tadkle a number of important science andiaaging problems. Also noted is the year irhigh
this caability was forecasted to bevailable Even with damaic increases in processor pa@k
mance,very large parallel achitectues are needed to @mess these pblems in the near futer
Some years further down the road, new grand challenges will be in view.
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Grand Challenge Problem:
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Figure 1-2Grand Challenge Application Requirements

A collection of important scientific and eingeing problems are positioned in a space defined by contiputd
perfomance and stage cgacity Given the exponentialrgwth rate of perbrmance and gaacity, both of these
axes map diectly to time. In the upper right cornepeas some of the Grand Challengsphcations identified b
the U.S. High Performance Computing and Communications program.

Parllel architectues hae become the mainstay of scientific computimgluding plysics,
chemistry, maerial science biology, astonomy, earth sciences, and othef$ie engneering
applicaion of these tools for modeling physical phenomena is now essential to manyié@sdustr
including petroleum @serwoir modeling), automote (crash simlation, drag anaysis, comhus-

tion eficiency), aeronautics (aidv anaysis, engine diciency, stiuctural medanics,electo-
magnetism), pharmaceuticals (molecular modeling), and others. In almost all of these
applicationsthere is a lage demand for visualization of thesults,which is itself a demanding
application amenable to parallel computing.

The visualization component has brought the traditional areas of scientific anele#ng com-
puting closer to the entertainment indystn 1995, the fit full-length computeanimated
motion pictue, Toy Stoly, was produced on a parallel computer system composed of hundreds of
Sun workstaions. This gplicaion was fhally possible because the unigérg tecinology and
architectue crossed threeek thresholdsthe cost of computing dropped tdvare the endering
could be accomplished within thedzet typically associated with &dtue fim, while the per
formance of the individual pcessos and the scale of parallelism rose thew it could be
accomplished in aeasonale amount of time (seral months on seral hundred prcessors).
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Ead science and eimgeiing goplicaions has an anajous threshold of computing capacity and
cost at which it becomes viable.

Let us take an example from the Grand Challenggram to help understand the strong iater
tion between pplications,architecture,and tebnology in the context of parallel machines.
1995 study[JNNIE] examined thefedtiveness of a wideange of parallel machines on anety
of gpplications,including a molecular dynamics page, AMBER (Assisted Model Building
through Enegy Refinement). AMBER is widely used to sifete the motion of lage biolagical
models such as proteins and ANwhich consist of sequences of residues (amino acids and
nudeic acids, espective}) each composed of individual atoriitie code was deloped on Gy
vector supezomputerswhich employ custom ECL-basedqgeessorsjarge expensie SRAM
memoriesjnstead of cates,and machine instructions that perh arithmetic or data nvement
on a sequencer vector of data valuegrigure 1-3 shows the speedup obtained on themsiens
of this code on a 128-processor mjmrocessebased machine - the IntehiRgon,descibed
later The particular test pblem involves the simalation of a protein solsted by vater This test
consisted of 99 amino acids and 3,375 water molecules for approximately 11,000 atoms.

The initial paallelization of the code (@rs. 8/94) resulted in good speedup for small ¢mé-
tions, but poor speedup on tar confguraions. A modest ébrt to improve the balance of erk
done by each pressorusing techniques we discuss in Chapter 2, avga the scaling of the
applicaion significantly (vers. 9/94). An additional &frt to optimize commanicaion produced a
highly scaldle version(12/94).This 128 processorewsion adieved a pemrmance of 406
MFLOPS; the best priously acieved was 145 MFLOPS on a#&rC90 vector pscessarThe
same pplication on a more dfcient parallel ahitecture the Cay T3D, achieved 891 MFLOPS
on 128 pocessas. This sort of'leaming cuwe” is quite typical in the patflelizetion of impotant
applications,as is the interaction betweeppticaion and achitecture The gplicaion writer
typically studies the gplicaion to understand the demands it places on vhdasle architec-
tures and how to impwe its perbrmance on aigen set of machine3he achitect may stug
these demands as well in order to understand how to make the machinefeatite eh a g/en
set of applications. Ideally, the end user of the application enjoys the benefits of both efforts.

The demand forwer increasing peofmance is a rtaral consequence of the modeling wityi
For example,in electronic CAD as the number of devices on the chipeasasthere is obi-
ously more to simlate In adlition, the increasing complexity of the desigmuires that mog
test \ectos be used andecause highervel functionality is incoporaed into the hip, each of
these tests must run for agar number of lock cycles. Futhermore an increasing el of con-
fidence is equired,because the cost dliricaion is so geda. The cunulative efect is that the
computaional demand for the desigenificaiion of each newegneraion is increasing at arven
faster rate than the performance of the microprocessors themselves.

Commercial Computing

Commecial computing has also come &y on parallel arhitectues for its high-endAlthough
the scale of parallelism is typically not agglas in scientific computinghe use of pailelism

is even more wide-s@ad Multiprocessas hare provided the high-end of the commercial com-
puting maket since the mid-60s. In thisesra,computer system speed and capaciyglate
directly into the scale of business that can be supported by the s{$temelaionship betveen
performance and scale of business quise is d¢early atticulated in the on-line transactiongsr
cessing (OLTP) bemenaks sponsored by th&ransaction Processingeformance Council
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Figure 1-3Speedup on Three Versions of a Parallel Program

The paallelization learning cwre is illustiated by the speedup obtained on three suaeessisions of this

molecular dynamics code on the Intel Paragon.
(TPC) [tpc]. These berttmaks rate the pedrmance of a system in terms of its throughput in
transactions-per-minutépm) on a typical wrkload TPC-C is an order entrypglication with a
mix of interactive and btch transactionsjncluding realistic éatues like queued énsactions,
aboting transactionsand eldorae presention featues[GrRe93]The benbmak includes an
explicit scaling citeria to make the mblem more ealistic:the size of the dabase and theum-
ber of terminals in the system increase as the tpan@yrrises.Thus,a faster system must oper
ate on a larger database and service a larger number of users.

Figure 1-4 shows the tpm-Catings for the collection of systemp@eaing in one edition of the
TPC results (Math 1996), with the dudewved throughput on theettical axis and the number of
process@ emplged in the safer along the hdzontal axis.This data includes a widamge of
systems from aaiiety of hadware and softare vendos; we hae highlighted the data pointsrf
models from adw of the \endos. Since the mhblem scales with system perfmnancewe cannot
compae times to see thefettiveness of parallelism. Insteade use the throughput of the sys-
tem as the metric of performance in Equation 1.1.
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Figure 1-4TPC-C throughput versus number of processors on TPC

he Mach 1996 TPC eBoI documents the transaction processingguerance for a wideang of systemThe

figure shows the number ofqaressos emplyed for all of the high end systems, highlightefleading endor

product lines. All of the major dabase endos utilize multiple pocessas for their high pedrmance options,
although the scale of parallelism varies considerably.

Example 1-1 The tpmC for théTandem Himalga and IBM Pwer PC systems arévgn in the
following table. What is the speedup obtained on each?
tpmC
Number of Processors IBM RS 6000 PowerPC  Himalaya K10000
1 735
4 1438
8 3119
16 3043
32 6067
64 12021
112 20918

For the IBM system we may calculate speedelptive to the uniprocessor systemheteas in
the Tandem case we can only calculate speedlgiive to a sixteen processor system. For the
IBM machine theregpeas to be a significant penalty in the parallglddase implementation in
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going from one to four mcessorshowvever,the scaling is @y good (superlinear) from four to
eight pocesscs. The Tandem system aEves good scalingalthough the speedupeeas to be
beginning to flatten towards the hundred processor regime.

Speedugymc
Number of Processors IBM RS 6000 PowerPC  Himalaya K10000
1 1
4 1.96
8 4.24
16 1
32 1.99
64 3.95
112 6.87

Seveal important obsegtions can be dwn from the TPC data.ifst, the use of parallel ahi-
tectues is pevalent. Essentially all of theemdos supplying debase haiware or softvare offer
multiprocessor systems thatgeide perbrmance substantially end their uniprocessor qa-
uct. Secondlit is not only lage scale parallelism that is impant, but modest scale ultiproces-
sor severs with tens of pcessorsand &en small-scale oitiprocessos with two or bur
processas. Fnally, even a set of well-documented measurements of a particular class of system
at a specific point in time cannotqwide a true telenologcal snapshoflechnoloy evolves ap-
idly, systems take time to delop and dploy, and real systems W@ a useful liétime Thus,the
best systemsvailable from a collection of @ndos will be at diferent points in their life ycle a&
ary time. For @ample,the DEC Alpha and IBM &verPC systems in the 3/96 TP€pot were
mud newer, at the time of theaport,than theTandem Himalga systemWe cannot corlade,
for example,that theTandem system is inhanmtly less eficient as a result of its schla design.
We can, havever,conclude thatven \ery large scale systems musadk the tetinology to retain
their advantage.

Even the desktop demorates a significant number of conoemt pocesseswith a host of
active windows and daemons. Quite often a single user wile hasks running on mgn
madines within the local area natvk, or farm tasks across the nei. The transition to pai-
lel programming,including new algrithms in some cases or attention to camingion and
synchronizéon requirements in existing atiyithms, has lagely taken place in the high perf
mance end of computingspecially in scientific pgramming The transition is in mgress
among the mch broader base of commercial eéreping software In the commercial wrld, all
of the major dbase endos support parallel machines for their high-end proddgtsically,
engineeing and commercialgplications taget more modest scaleuttiprocessorswhich domi-
nae the serer maket. Hovever, the major debase endos also dfer “shared-nothing’ver-
sions for lage parallel machines and collections ajrikstaions on a fast netwk, often called
clusters In adlition, multiprocessor machines are khi¢g used to impove throughput on moiti-
progmamming vorkloads. All of these trends quide a solid pplicaion demand for paitlel
architectures of a variety of scales.
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Figure 1-5Improvement in logic density and clock frequency of microprocessors.

Improvements in lithgraphic tedinique,process tdmology, circuit design, and dapah design hee yielded
a sustained improvement in logic density and clock rate.

1.2.2 Technology Trends

The importance of parallelism in meeting thpplécation demand for wer geder perbrmance
can be brought into sharper focus by looking méwsely at the adancements in the undging
technoloy and achitecture These trends sggst that it may be ineasingy difficult to“wait for
the single processor to get fast enougiile parallel achitectues will become more and neor
attractive Moreover,the kamindion shows that the critical issues in parallel computetnitec-
ture are fundamentally similar to those that we wrestle witlséguential’computes, such as
how the esouce hudget should be divided up among functional units that do thv&,weaches to
exploit locality, and wires to provide bandwidth.

The pimary technologcal advance is a steady reduction in the basic VL&itdie siz. This

makes tansistorsgates,and circuits faster and smallep more fit in the same area. Irdditn,

the useful die size isgwing, so there is more area to use. Inuaily, clock rate improves in po-

porttion to the impovement in éatue siz, while the number of &insistos gows as the squar
or even faster due to increasingasall die areaThus,in the long run the use of mangmisistors
at once i.e., paillelism,can be expected to coitnte more thanlock rate to the obsered per

formance improvement of the single-chip building block.

This intuition is borne out byxamindion of commercial miaprocessa. Figure 1-5 shows the
increase in lock frequeng and transistor count for weral important micoprocessor dmilies.
Clock rates for the leading mioprocessa increase by about 30% peyay,while the number of
transistos increases by about 40% peray Thus,if we look at the aw computing pwer of a
chip (total tansistos switching per second), transistor capacity has douited an order of nta
nitude more thanlock rate over the past two decadédhe perbrmance of micoprocessar on
standad bentimaks has been increasing at aigim greder rate The most widely used belne
maik for measuring wrkstdion perbrmance is the SPEC suitehich includes seeral realistic
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integer programs and fBaing point ppgrams[SPEC]. Intger perbrmance on SPEC has been
increasing at about 55% pegar,and fbaing-point perbrmance at 75% perear The LINPACK
benchmak[Don94] is the most widely used metric of periance on umeical gplications.
LINPACK floaing-point perbrmance has been increasing at more than 80%gaemMus, pro-
cessos are getting faster in igeg part by making more fetctive use of anwer lager volume of
computing resources.

The simplest analysis of these Haology trends sugests that the basic single-chipilding
block will provide increasingy large cgacity, in the vicinity of 100 million tansistos by the
year 2000This raises the possibility of placing more of the computer system ohifhénclud-
ing memory and I/O suppiior of placing multiple pycessas on the hip[Gwe94b].The former
yields a small and ceenienty padkaged building lock for parallel achitectues. The ldter
brings parallel ashitectue into the single chipegime[Gwe94a]. Both possibilities are irvie
dence commeially, with the system-on-a-chip becomingsfiestalished in embedded systems,
portablesand low-end personal computer products.[x86,mips] Multipbegssas on a chip is
becoming established in digital signal processing[Fei94].

The divergence between capacity and speed iglmmore pronounced in memory tewlogy.
From 1980 to 1995, the capacity of a DRAM chip increased a thousithdyfiadrupling eery
three years,while the memoryycle time impoved by only a factor of two. In the time-frame of
the 100 million transistor mioprocessorwe anticipate igabit DRAM chips, but the gp
between processorycle time and memoryycle time will have gown substantially widehus,
the memory bandwidth demanded by the processor (bytes per mgrdej)yi€ gowing rapidly
and in order to &g pace we must tanser more data in parallelrém PCs to wrkstdions to
serversdesigns based on camtional DRAMSs are using wider and wider paths into the mgmor
and geder inteteaving of memory banks. &allelism. A number of achknced DRAM designs
are gpeang on the maeet which transer a lage number of bits per memorydae within the
chip, but then pipeline thednskr of those bits across a mawer interface at high éguencylin
addition,these designs retaieaenty data in fast on-chipuifers, much as processor caches do,
in order to reduce the time for future acces$hsas,exploiting parallelism and locality is ceatr
to the advancements in memory devices themselves.

The lgeng of a memory opetion is determined by the access timdich is smaller than the
cyde time but still the number of processoraes per memory access time igeand inceas-
ing. To reduce thewerag laeng expeiienced by the processor and to increase theviidtid
tha can be deliered to the pscessorwe must make more and moréeefive use of the ieels of
the memory hiarcty that lie between the processor and the DRAM mgn#s the size of the
memoy increasesthe access time increases due tdresks decodingnternal delays in dring
long bit lines, selection fic, and the need to use a small amounthairge per bit. Essentially all
moden microprocessa piovide one or two Ieels of caches onhip, plus most system designs
provide an additional kel of extemal catie A fundamental question as we waanto nmultipro-
cessor designs is how toganiz the collection of caches that lie between the maogessors
and the many memory modules. Feample,one of the immediate benefits of paralleltétec-

1. There are many reasondhwthe transistor count does not increase as the square ¢tdtkeate One is
that much of the area of a processor is consumed bgsjgerving to disibute contol, daa, or dock, i.e.,
on-chip comnunicaion. We will see that the comumicaion issue eappeas at @ety level of parallel com-
puter architecture.
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tures is that the total size of eackideof the memory hiarchy can increase with the number of
processors without increasing the access time.

Extending these obsetions to disks, we see a similaveigence Parallel disks stoaige sys-
tems,such as RAIDare becoming the norm. lgg, multi-level caches for files or diskdrks ae
predominant.

Architectural Trends

Advances in teltnology determine W& is possible; athitectue transldes the potential of the
technology into perbrmance and gaability. There are fundamentally twoays in which a lager
volume of esourcesmore tansistorsimproves perbrmance:parallelism andlocality. More-
over,these two fundamentally compete for the sagseuces.Wheneer multiple opestions ae
perfomed in parallel the number ofaes equired to &ecute the pygram is educed However,
resouces are @quired to support each of the simultaneous activitidiseneer data eferences
are perbrmed close to the pcessorthe laeng of accessing deepewkds of the staage hiear-
chy is avoided and the number ofdes to eecute the prgram is educed However,resources
are also equired to povide this local stage In generalthe best pedrmance is obtained by an
intermedide stateg which devotes esouces to exploit a dgee of parallelism and a gee of
locality. Indeed we will see throughout the book that parallelism and locality interact iregtter
ing ways in systems of all scales, from within a chip to acrosgja [zarallel makine In curent
microprocessordhe die area is dividedughly equally between cache sage,processingand
off-chip interconnect. Laer scale systems may exhibit a serha different split, due to diér-
ences in the cost and performance trade-offs, but the basic issues are the same.

Examining the trends in miaprocessor ahitectue will help build intuition tevards the issues
we will be dealing with in parallel machines. It will also ill@rhow fundamental parallelism is
to corventional computer ahitectue and how cuent achitectual trends are leading ward
multiprocessor designs. (The discussion of processor design techniques in this boséris cur
since many of theeades are expected to be familiar with those techniques fraxitiwnal
architectue texts[HeP90] or the many discussions in the tradatiter It does povide piovide

an unique perspective on those techniques, however, and will serve to refresh your memory.)

The history of computer ehitectue has taditionally been divided into fourenerdions identi-
fied by the basic c technology:tubes, tansistorsjntegraed circuits, and VLSI. The entie
peliod covered by the fjures in this bapter is lumped into theofith or VLSI generation.
Clearly, there has been tremendoushdtectual ad/ance @er this peiod, but wha delinedes
one era from the next within thiggergion? The stongest delineation is the kind of fdlelism
that is exploited The period up to about 1985 is dominated byaadements ibit-level parallel-
ism, with 4-bit micloprocessa replaced by 8-bit, 16-bit, and so on. Doubling the width of the
datap#h reduces the number ofaes required to perbrm a full 32-bit opeation. This trend
slows once a 32-bit ard size is eatied in the mid-80s, with only partial adoption of 64-bit eper
ation obtained a decadetém Further increases inosd-width will be diven by demandsof
improved fbaing-point iepresention and a lager adiress spageaather than pedrmanceWith
addess spacesguirments gowing by less than one bit peegr,the demand for 128-bit oger
tion gopeas to be well in the fute The ealy microprocessor period wasla to reg the bene-
fits of the easiestofm of paallelism: bit-level parallelism in eery opegtion. The damatic
inflection point in the mi@processor pwth cuwve inFigure 1-1 marks the aival of full 32-bit
word operation combined with the prevalent use of caches.
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Figure 1-6Number of transistors per processor chip over the last 25 years.

The gowth essentiallydllows Moore’s law which says that the number ohfrsistos doubles eery 2 years. Fore-
casting from past trends we caasonalyl expect to be designing for a 50-100 million transistaigst at the end

of the decade. Also indicated are tl

s of design within theolrth, or VLSI generdion of computer ahitec-

ture reflecting the increasing level of parallelism.

The period from the mid-80s to mid-90s is dominated lwaacdements iimstruction-level par
allelism Full word opegtion meant that the basic steps in instruction processingugtisin
decode,integer aithmetic, and adress calculation) could be penfned in a singleyle; with
cadies the instructioretch and data access could also begaréd in a singleycle, most of the
time. The RISC pproad demonstted tha, with care in the instruction set design, iaav
straightforwad to pipeline the sges of instruction processing so that an instructioxésated
almost &ery cycle, on average Thus the parallelism inherent in the steps of instructiocgss-
ing could be exploited across a small number of instructidle pipelined instruction jo-
cessing was not mg it had neer bebre been so well suited to the ungérg tedinology In
addition, advances in compiler technology made instruction pipelines more effective.

The mid-80s miavprocessebased computers consisted of a small constellatioripkican
integer processing unit, acdting-point unit, a cache cowmlier, and SRAMs for the cache tda
and tag stage As chip capacity increased these componests woalesced into a singlaip,
which reduced the cost of conumicaing among themThus, a single chip contained p&rate
hardwae for integer aithmetic,memory opeations,brandh opeations,and fbaing-point opea-
tions. In addition to pipelining individual insictions,it became gy attractive to etdh multiple
instructions at a time and issue them in parallel to distinct function uhiésewer possike. This
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form of instruction lgel parallelism came to be calledperscalarexecution. It povided a ntu-

ral way to exploit the eer increasing number okailale chip esouces. More function units
were adled, more instructions ere fetched at timeand more instructions could be issued in
each clock cycle to the function units.

However,increasing the amount of instructiowéé parallelism that the processor can exploit is
only worthwhile if the processor can be supplied with instructions and data fast enowggp tb k
busy In order to satisfy the increasing instruction and data bandwedthirementlarger and
larger caches ere placed on-chip with the geessorfurther consuming thever inceasing
number of tansistos. With the processor and cache on the sahig, the path between the dw
could be madeery wide to statisfy the bandwidtlequirrment of multiple instruction and tda
accesses peycle. Hovever,as more instructions are issued eagtie; the perbrmance impact
of each control anser and each cache miss becomes more significant. A coringktr mgy
hawe to wait for the dgth, or latency of the processor pipelinantil a particular instrction
reades the end of the pipeline and determinémchv instruction to ®ecute next. Simildy,
instructions vhich use a value loaded from memory may cause the processor to wait for the
latency of a cache miss.

Processor designs in the 90ty a variety of complex instruction processing mechanisms in
an efort to reduce the pesfmance dgraddion due to léeng in “wide-issue”superscalar pr
cessos. Sophisticated bBnd prediction techniques are used Yoid pipeline laeng by guess-
ing the direction of controldiv before brandes are actuallyesolved Larger, more sophistidad
cades are used @voidthe laeng of cache misses. Instructions are scheduwedushically and
allowed to complete out of order so if one instruction encounters a miss, other instructions can
proceed ahead of it, as long as they do not depend on the result of the instructigar Wvilar
dow of instructions that are waiting to issue is maintained within the processomhanewr an
instruction produces a newvesult, several waiting instructions may be issued to the function
units. These complex mechanisms allow the processtwi¢oatethe laeng/ of a cache-miss or
pipeline dependence when it does occurweleer, each of these mechanisms place ayea
demand on chip resources and a very heavy design cost.

Given the expected increases in chip dendity naural question to ask is how far will inat-
tion level parallelism go within a single thread of control? Atavpoint will the emphasis shift
to supporting the highertels of parallelismailade as multiple processes or multipleghds
of contol within a pocessij.e, thread level parallelismBeveal researb studies hae sought to
ansver the fist part of the question, either through glaion of aggressie madine
designs[Cha*91,Hor*90,Lee*91,MePB1] or through analysis of the inherenbpeties of po-
grams[But*91,Jo0Wa89,Joh90,Smi*8%W91]. The most complete déement gpeas in
Johnsors book deoted to the topic[Joh90]. Sutation of eggressie machine designsgerally
shaws that 2-vay supescalar,.e., issuing two instructions peycle, is very profitade and 4-vay
offers substantial additional bertefut wider issue widths, g, 8-way supescalar,provide little
additional gain.The design complexity increasesanatically,because control ansfes occur
roughly once in five instructions, on average.

To estimate the maximum potential speedup that can be obtained by issuing multijpdtidnstr

per gcle, the eecution trace of a pgram is sinulated on an ideal machine with unlimited
instruction fetch bandvidth, as many functions units as thegram can useand perfect lanch
prediction. (The latter is easgince the trace crctly follows each kand.) These gnerous
madine assumptions ensure that no instruction is held up because a function unit is busy or
because the instruction isymad the look-ahead pability of the piocessar Futhermore,to
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ensue that no instruction is delad because it updates a location that is useddigally previ-
ous instuctions, storage resouce dependences aremowed by a technique callegnaming
Ead update to aagster or memory location isdged as introducing a nelfmame,” and subse-
guent uses of the value in theeeution traceefer to the new name. In thisay the eecution
order of the ppgram is constrained only by essential data dependences; each instructien is e
cuted as soon as its operands arailable Figure 1-7 summaizes the result of thiSideal
machine”analysis based on data presenteddiyngon[dh91]. The histgram on the left shas

the fraction of gcles in which no instruction could issyenly one instuction, and so on.
Johnsors ideal machine retains realistic function unieteies,including cache misses,hich
accounts for theeto-issue gcles. (Other studies ignore cachéeets or ignore pipeline tien-
cies, and theeby obtain more optimistic estimatedNe see thatwen with infinite mahine
resourcesperfect banc prediction, and ideal enaming,90% of the time no more thaour
instructions issue in aycle. Based on this disbution, we can estimate the speedup obtairted a
various issue widths, as shown in the right portion of tharé Recent wark[LaWi92,Soh94]
provides empirical evidence that to obtain sigdfitly larger amounts of patlelism, multiple
threads of control must be pursued gitaneously Baring some urdreseen kakthough in
instruction lesel pagllelism,the leap to the nextvel of useful paallelism, multiple concurent
threads, is increasingly compelling as chips increase in capacity.
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Figure 1-7 Distribution of potential instrction-lewel parallelism and estimated speedup under ideal stadar
execution

The figure shows the digbution of available instiuction-lewel parallelism and maximum potential speedup under i
alized superscalarxecution,including unbounded processingsouces and perfect anc prediction. Data is an
average of that presented for several benchmarks by Johnson[Joh91].

The trend twvard thread or pycess-leel parallelism has been strong at the computer systesh le
for some time. Computers containing multipletestaf-the-ar microprocessar sharing a com-
mon memory became g@ualent in the mid 8@, when the 32-bit miaprocessor wast intro-
duced[Bel85]. As indicated blyigure 1-8, which shows the number of gresss availabe in
commecial multiprocessas over time this bus-based shad-memoy multiprocessor pproach
has maintained a substantial multiplier to the increasingpeaice of the individual pces-
sors. Almost &ery commercial miapprocessor introduced since the mid-80svjafes hadware
suppot for multiprocessor condjurations,as we discuss i€hgpter5. Multiprocessas dominae
the server and enterprise (or mainframe) markets and have migrated down to the desktop.

9/10/97

DRAFT: Parallel Computer Architecture 35



Introduction

1.2.4

The ealy multi-microprocessor systemsese introduced by small companies competing for a
shae of the minicomputer mket, including Synase[Nes85],Encoe[Sha85], Flex|Mat85],
Sequent[Rod85] and Mias[Sa85]. They combined 10 to 20 mioprocess® to delver com-
petitive throughput on timesharing loadlgith the introduction of the 32-bit Intel i80386 as the
base pocessorthese system obtained substantial commercial success, especiallysaction
processing However, the pid perbrmance adance of RISC mi@processorsgxploiting
instruction level paallelism,sapped the CISC ultiprocessor momentum in the late 80s (and all
but eliminated the minicomputer). Shigrthereafter,several lage companies lgan poducing
RISC multiprocessor systems, especially asyssrand mainframeeplacementsAgain, we see
the critical role of bandwidth. In most of theseltiprocessor designs, all theogessaos plug
into a common bus. Since a bus hasedfigygregae bandvidth, as the ppcesso becomedster,

a smaller number can be supported by the Ths.ealy 1990s brought a dmaic advance in the
shaed memory bus ténology,including faster electrical signallingvider data phos, pipelined
protocols,and multiple paths. Each of theseyded geaer banavidth, growing with time and
design &perience as indicated irFigure 1-9. This alloved the nultiprocessor designs tamp
bak up to the ten to twentyange and bgond, while tracking the micoprocessor
advances[AR94,Cek*93,Fen*95,Fra93,Gal*94,GoMa95].

The picture in the mid-90s il interesting Not only has the bus-based sttsmemoy multi-
processor pproat become ubiquitous in the industit is present at a wideange of scale
Desktop systems and smallwss commonly support two to fourqaressorslarger severs sup-
port tens, and lgie commercial systems are movingvéad a hunded Indications are that this
trend will contiue As indication of the shift in emphasis, in 1994 Intel defined a stdndar
approab to the design of mitiprocessor PC systems around its Pentiumapitcessor[Sla94].
The fPllow-on RentiumPo microprocessor allows dur-processor confiurdions to be con-
structed by wiring the chips ¢ether without gen any glue Igic; bus divers, arbitration,and so
on are in the miaprocessofThis development is expected to make small-scaldtigrocessors
a true commaodityAdditionally, a shift in the industry business model has been natesie mul-
tiprocessas are being pushed by soétw vendors,especially debase companiesather than
just by the hadware vendos. Combining these trends with thehtrology trends,it appeas tha
the question is when, not if, multiple processors per chip will become prevalent.

Supercomputers

We have looked at thedices diving the deelopment of parallel ahitectue in the gneal mar
ket. A secondconfluent set ofdrces come from the quest tchéme absolute maximum pexf
mance,or supercomputingAlthough commercial and iafméaion processing @plications ae
increasingy becoming important drers of the high endhistoiically, scientific computing has
been a kind of mving ground for inn@ative achitecture In the mid 60’s this included pipelined
instruction processing and dynamic instructiohestuling,which are commonplace in migpro-
cessos todgy. Starting in the mid 78; supercomputing was dominated Wgctor pocessors,
which perfbrm opestions on sequences of data elementsaivector,rather than individual sca-
lar dataVector opegtions permit more parallelism to be obtained within a single thread of con-
trol. Also, these vector supssmputes were implemented in ety fast, expensive,high paver
circuit technologies.

Dense linear algpbra is an important component of Scientific computing and the specific empha-
sis of the LINFARCK bentimak. Although this benttmak evaluaes a naow aspect of system
performanceit is one of thedw measurementvailade over a \ery wide class of machinever
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Figure 1-8Number of processors in fully configured commercial bus-based shared-memory multiprocessors

After an initial era of 10 to 20-&y SMPs based on slow CISC noprocessors;ompanies such as Sun,,HIFEC,
SGI, IBM and CRI bgan producing sizae RISC-based SMPs, as did commerc&idos not shown hey including
NCR/ATT, Tandem, and Pyramid.

a long period of timeFigure 1-10 shows the Linpack paxfmance trend for one processor of the
leading Cay Researh vector sup@omputers[Aig*89,Rus78] compared with that of thasfest
contemporar microprocessebased wrkstaions and sefers. For each system two data points
are povided The laver one is the pesfmance obtained on a 100x100trmaand the higher one
on a 1000x1000 ntax. Within the vector processingproachthe single processor permance
improvement is dominated by modest impements in gcle time and more substantial irases

in the vector memory bandwidth. In the naiprocessor systems, we see the combingztebf
increasing fock rate, on-chip pipelined 8aing-point units, increasing on-chip cacheesiz
increasing dfchip second-leel cache sig, and increasing use of instructiorvéé paallel-
ism.The gap in uniprocessor performance is rapidly closing.

Multiprocessor ahitectues are adopted by both the vector processor andopnosressor
designsbut the scale is quite fifrent. The Ciay Xmp provided first two and later four pces-
sors,the Ymp eight, the C90 sixteen, and the T94tHivo. The micoprocessor based super
computes piovided initially about a hundred geessorsincreasing toagughly a thousand &m
1990 onvard Thesemassively parallel mrcessors(MPPs) hae tracked the micoprocessor
advanceyith typically a lag of one to twoeais behind the leading migprocesscebased verk-
staion or personal computer. As shown kigure 1-11, the lage number of slightly slwer
microprocess& has poved dominant for this behmak. (Note the hang of scale fom
MFLOPSFigure 1-1a0 GFLOPS.)The perbrmance adantag of the MPP systemwer tradi-
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Figure 1-9Bandwidth of the shared memory bus in commercial multiprocessors.

.After slow gowth for several years,a new era of memory bus desigrée in 1991 This supported the use of sub
stantial numbers of very fast' microprocessors.

tional vector sup@omputes is less substantial on more complgipligations[MS] owing to

the elative immadurity of the pogramming languges,compiles, and algrithms, hovever,the

trend tavard the MPPs is still ey pronounced The importance of this trend wagpparent
enough that in 1993 @ Reseath announced it§3D, based on the DEC Alpha magrocessor.
Recenty the Linpack berftmak has been used to rank the fastest computers systems in the
world. Figure 1-12 shows the number of uitiprocessor vector pcessos (PVP), MPPs, and
bus-based shared memory machines (SMipeamg in the list of the top 500 systenihe I&-

ter two are both microprocessor based and the trend is clear.

1.2.5 Summary

In examining cuent trends from aariety of pespecties — economics, teoology,architecture,
and gplication demand — we see that parallelhdrectue is inceasingy dtractive and inceas-
ingly central.The quest for pedimance is so keen that parallelism is being exploited ay man
different levels at \arious points in the computer design space. Instructiesl lgarallelism is
exploited in all modern high-pesfmance pocessas. Essentially all machinesysnd the desk-
top are multiprocessorsincluding severs, mainframes,and suparomputes. The \ery high-end
of the perbrmance cure is dominated by massiy parallel pocessos. The use of lage scale
pamllelism in gplicaions is broadening and small-scal@ltiprocessos are emgjing on the
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Figure 1-10 Uniprocessor pedirmance of supeomputes and micoprocessebased systems on the LINGK

benchmark.

Perfomance in MFLOPS for a single processor on solving dense linear equations is shown for the lesdir
vector supercomputer and the fastest workstations on a 100x100 and 1000x1000 matrix.

desktop and seers are scaling to lger confgurdions. The focus of this book is theuttipro-
cessor leel of parallelismWe study the design principles embodied in parallel machioes fr
the modest scale to thery large, so that we may understand the spectrum dileigaallel
architectures that can be built from well proven components.

Our discussion of the trendsatard parallel computers has beeringarily from the pocessor
perspectiveput one may aive at the same conclusion from the memory systersppetive.
Consider biefly the design of a memory system to supporémt large amount of da, i.e., the
data set oflarge problems. One of theelv physical laws of computer @ritectue is that &st
memoies are small, l@e memories are sk This occurs as a result of maracfors,including
the increased alless decode timéhe delays on the ineasingy long bit lines, the small dre of
increasingy dense stage cells, and the selector delaysis is why memory systems are con-
structed as a hiarcty of increasingy larger and slaver memories. Onvarage a lage hiearchi-
cal memory isdst,as long as theeferences exhibit good localitfhe other tick we can play to
“ched the laws of pisics” and obtain fast access onexylarge data set is teeplicae the po-
cessor and ha the diferent pocessos access independent smaller memories. Ofsegpinys-
ics is not easilydoled We pay the cost when a processor accesses non-ldaaviech we call
communicationand when we need todbrestrge the actions of the manyquessorsi.e.,, in syn-
chronization operations.
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Figure 1-11Performance of supercomputers and MPPs on the LINPACK Peak-performance benchmark.

Peak perbrmance in GFLOPS for solving dense linear equations is shown for the leagyngu@tiprocessor gc-
tor supercomputer and the fastest MPP systems. Note the change in scale from Figure 1-10.

1.3 Convergence of Parallel Architectures

Historically, parallel machines ka dereloped within seeral distinct achitectual “camps”and
most texts on the subject arganizd around a taxonomy of these designsvéler,in looking
at the evolution of parallel achitecture,it is clear that the designs areosigly influenced by the
same telnologcal forces and similar@plicaion requirements. It is not sprising that there is a
gred deal of comergence in the &ld. In this section, our goal is to construct anfiewok for
undestanding the entire spectrum of parallel computehitectues and to build intuition as to
the naure of the comergence in the &ld. Along the vay, we will provide a quick gerview of the
ewlution of parallel magines,starting from the traditional camps and movingaal the point
of convergence.

1.3.1 Communication Architecture

Given that a parallel computer is “a collection of processing elements thaturicaim and
cooperge to solve lage pioblems fast,” we may easonalyl view parallel achitectue as the
extension of comentional computer ahitectue to adiress issues of commicaion and cooper
ation among processing elements. In essgpaeallel achitectue extends the usual concepts of
a computer ahitectue with acommunication athitecture Computer arhitectue has two dis-

40 DRAFT: Parallel Computer Architecture 9/10/97



Convergence of Parallel Architectures

of Systems

Number

350

1313 319

w
o
o

N
(¢}
o

39

N
o
o
[ ]

08 —O— MPP
—O0—PVP

—A—SMP

D

87

[EEN
ol
o

110
A 2106

106‘\\\\“~\~ﬁg73

I
o
o

50

0 &0
11/93 11/94 11/95 11/96

Figure 1-12Type of systems used in 500 fastest computer systems in the world.

Paallel vector pocesscs (PVPs) hee gven way to microprocessebased Massely Parallel Processos (MPPS)
and bus-based symmetric shared-memory multiprocessors (SMPs) at the high-end of computing.

tinct facets. One is the definition of criticéistractionsespecially the hdware/softwag bound-
ary and the user/system boungldrhe achitectue specifies the set of opions at the boundgr
and the data types that these afgepn.The other facet is the ganizdional stucture that eal-
izes theselastractions to delier high perbrmance in a cost-ffctive manner. A commmication
architectue has these twatetsas well. It defines the basic comnicaion and synhkronization
operations, and it addresses the organizational structures that realize these operations.

The framework for understanding communication in a parallel machine is illustrated in Figure 1-
13 The top lger is the ppgramming model, Wwich is the congatualizaion of the machine tha

the pogrammer uses in codingplications. Each pygramming model specifies how parts of the
program running in parallel comumicae informdion to one another andha syndironization
operdions are wailabe to coodinae their activitiesApplications are written in a pgramming
model. In the simplest casa nultiprogramming vorkload in which a lage number of indeen-

dent sequential pgrams are run on a parallel nhéme, there is no comomicaion or coopes-

tion at the ppgramming leel. The more interesting cases include parallegmming models,

sud asshaed address spacmessage passingnddata parallelprogrammingWe can desdoe

these models intuitively as follows:

¢ Shaed addresprogramming is like using a bulletin balmwhere one can comumicae with
one or many colleagues by postingoimhaion at knavn, shared locations. Individual agti
ties can be orchestrated by taking note of who is doing what task.
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* Message passinig akin to telephone calls or lettewhich corvey informaion from a spe-
cific sender to a specifiegeiver Ther is a vell-defined ent when the irdrmaion is sent
or received,and thesewents are the basis forahrestréing individual activities. Havever,
there is no shared locations accessible to all.

¢ Data parallelprocessing is a moregmented brm of coopeation,where se&eral egents per
form an action on garde elements of a data set sitaneous} and then xchang informa-
tion globally bebre continuingen masseThe global eorganizdon of data may be
accomplished through accesses to sharehieasles or mesges, since the pygramming
model only defines the overall effect of the parallel steps.

A more precise definition of theseogramming models will be deloped later in the text; at this
stage it is most important to understand the layers of abstraction.

A programming model isaalizzd in terms of the uséevel comnunicaion primitives of the sys-
tem,which we call thecommunication abstractiofiypically, the ppgramming model is embod-
ied in a parallel langug or ppgramming emironment,so there is a mapping from thergeric
langua@ constructs to the specificimpitives of the systenThese uselevel pimitives may be
provided diectly by the hadware,by the opeating system or by machine specific user safev
which maps the comumicaion astactions to the actual hdware pimitives. The distance
between the lines in thediure is intended to indicate that the mapping from ap®rs in the po-
gramming model to the hdware pimitives may be ety simple or it may beety involved For
example,access to a shared location éalized diectly by load and store instructions on a
madine in which all processos use the same physical memdronvever, passing a mesga on
sud a machine may wolve a libary or system call to write the meggainto a lffer area or to
read it out. We will examine the mapping between layers more below.

CAD Database Scientific Modeling
Parallel Applications
; . Shared Message Data i
Multiprogramming xyjress Passing parallel Programming Models

Compilation Communication Abstraction
o User/System Boundary
Library | operating Systems Support

Hardware/Software Boundary
Communication Hardware

Physical Communication Medium

Figure 1-13Layers of Abstraction in Parallel Computer Architecture

Criti?al layers of dstractions lie between theplicaion program and the actual tdware The q()jplicaion is wiit-

ten for a

activies. The specific opetions poviding comnunicéion and synbronizdion form the commnicéion &bstrac-
tion, which is he boundary between the usesgmem and the system implementatidiis éstraction is ealized
through compiler or likery support using the pnitives aailate from the hadware of from the ogatlng system,
which uses priledged hadware pimtives.The comnunicaion hadware is oganizd to povide these opations
efficiently on the physical wires connecting together the machine.

gramming model, Wich dictates how pieces of theogram share irdrmaion and coadinate their

The comnunicaion architectue defines the set of conumicaion opesgtions aailabe to the
user softvare,the orma of these opeations,and the data types they ogter on, nuch as an
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instruction set arhitectue does for a jmcessarNote that een in conentional instruction sets,
some opations may be ealizzd by a combination of hdware and softare, such as a load
instruction which relies on opeting system intarention in the case of a gafault. The comnu-
nicaion aichitectue also extends the computeganizdion with the hadwar stuctures tha
support communication.

As with corventional computer ahitecture there has been aeggt deal of déae over the yars
as to wha should be incqroraed into each ler of dstraction in parallel athitectue and hw
large the“gap” should be between theykrs. This dévate has been fueled byrous assumptions
about the unddying tednology and more qualitive assessments of “ease afgnamming."We
have drawn the hardware/software boundary as flat, which might indicate that the available hard
ware pimitives in diferent designs ha more or less urofm compleity. Indeed this is becom-
ing more the case as the fieldtaras. In most edy designs the physical ldware oganization
was stongly oriented tavard a particular pggramming modelj.e., the comnunicaion abstrac-
tion supported by the hdware was essentially identical to theogramming modelThis “high
level” parallel achitectue gproad resulted in tremendousvéisity in the hadware oganiza-
tions. Havever,as the ppgramming models hee become better understood and implentanta
techniques hee maured,compilers and run-time liaries hae gown to povide an imporant
bridge between the pgramming model and the undigng hadware Sinultaneouslythe tet-
nologcal trends discussehave hare exerted a strong inflence,regadless of pogramming
model.The result has been a e@ngence in the @anizdional stucture with relatively simple
general purpose communication primitives.

In the remainder of this section seys the most widely used ggramming models and the eor
responding styles of machine design in past anckotiparallel machines. Histoally, pamllel
madines vere stongly tailored to a particular pgramming model, so it was common to lump
the pogramming model, the commicaion &bstraction,and the machine ganizadion together
as “the athitecture”,e.g., a shared memory ehitecture,a messge passing a&hitecture,and so
on. This gproad is less ppropride tody, since there is a lge commonality across el
madines and many machines suppoxtesa programming models. It is important to seenho
this comwvergence has comebaut, so we will bgin from the traditional pepectie and look &
madine designs associated with particulasgg@amming models, and explain their intendekbr
and the telenologcal opportunities that influenced their desighe goal of the swey is not to
dewelop a taxonomy of parallel machingsr se but to identify a set of core concepts thati
the basis for assessing desigrdg-ofs across the entire spectrum of potential designs today and
in the futue. It also demonsétes the influence that the dominanthieslogcal direction esta
lished by micoprocessor and DRAM témologes has had on parallel machine desighiciv
makes a common ¢éetment of the fundamental design issuetsirzd or even impeative Specifi
cally, shaed-addressmnessge passingdata paallel, daaflov and systolic pproades are p@-
sentedIn each caseve explain thelastraction embodied in the pgramming model and lookt a
the motvations for the particular style of design, as well as the intended scalgplichton.
The tedinologcal motivations for the pproath are examine and how thedwangd orer time
These bangs are eflected in the machine ganizationwhich determines ha is fast and Wwat
is slov. The perbrmance baracteistics ripple up to influence aspects of the@gramming
model.The outcome of this brief susy is a clear gzanizdional covergencewhich is cgtured
in a generic parallel machine at then end of the section.
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1.3.2 Shared Memory

One of the most important classes of parallel machinsisaied memory multiprocessorEhe

key propety of this class is that commicaion occurs implicitly as a result of cegntional
memoy access instrctions,i.e., loads and store3his class has a long hisypdating at least to
precursos of mainframes in the dgr60<, and today it has a role in almoseey segment of the
computer indusyr. Shared memory uftiprocessas seve to povide better throughput on urti-
progmamming vorkloads,as well as to support parallelograms.Thus,they are nturally found
acioss a wideange of scalefrom a fw processas to perhaps hundreds. Below we examine the
communicgion architectue of shagd-memoy machines and theek organizdional issuesdr
small-scale designs and large configurations.

The pimary programming model for these machine is essentially that of timesharing on a single
processorgxcept that real parallelismeplaces intdeaving in time. rmally, a process is a vir
tual adiress space and one or more threads of control. Processes can dngexbsb that per
tions of their adress space are skdr i.e, are mapped to common physical lbca, as
suggested byFigure 1-19. Multiple threads within a pcesspy defnition, share portions of the
addess space. Cooption and coadingion among threads is accomplished by reading and
writing shared ariades and pointersefering to shared attessesWites to a logically shagd
address by one thread are visible to reads of the other thrdddscomnunicaion architecture
employs the comentional memory opetions to povide comnunicaion through shad
addressess well as special atomic opgons for synbronizdion. Completely independentgsr
cesses typically share therkel portion of the adress spacgealthough this is only accessed b
operding system code. Nonetheless, the shareldead space model is utilized within the ater

ing system to coordinate the execution of the processes.

While shared memory can be used for camioaion among arbitiry collections of pocesses,
most parallel pspgrams are quite sictured in their use of the virtual dobss spacelhey typi-
cally hare a common code imga, private segments for the stack and othevate dda, and
shaed segments that are in the saegon of the virtual adress space of each process ogdiar
of the ppgram. This simple stucture implies that the prate varialdes in the pogram are pesent
in each process and that sharadales hae the same alless and meaning in each process or
thread Often staightforwad paallelization stiatedes are emplped; for xample,each pocess
may perform a subset of the itatfons of a common parallel loop,anore gnerally,processes
may opeete as a pool of arkers obtaining wrk from a shared queudle will discuss the stic-
ture of parallel ppgram more deggly in Chapter 2. Here we look at the basiolation and deel-
opment of this important architectural approach.

The comnunicaion hadware for shaed-memoy multiprocessas is a ntural extension of the
memoy system found in most computers. Essentially all computer systems allaveesgor
and a set of I/O condllers to access a collection of memory modules through some kinddsf har
ware inteconnect,as illustated in Figure 1-15 The memory capacity is increased simpiy b
adding memory modulesAdditional capacity may or may not increase thailabde memoy
bandwidth,depending on the specific systengamizdion. 1/0O capacity is increased byding

1. Some say that BINC was the fist multiprocessorsbut it was intended to impve reliability. The two
process@ thedk each other atvery instruction.They never ayreed,so people wentualy turned one of
them off.
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Figure 1-14Typical memory model for shared-memory parallel programs

Collection of processes Y@ a commonagon of physical adresses mapped into their virtualdeelss spacen
addition to the private region, which typically contains the stack and private data.

devices to I/O conllers or by inserting additional 1/0O contters. There are two possible ays
to increase the processingpeaity: wait for a faster processor to becomaikable,or add moe
processa. On a timesharing avkload,this should increase the throughput of the systWith
more plocessorsmore processes run at once and throughput ieased|f a single @aplication
is programmed to make use of multiple ¢ladsmore pocessas should speed up thpgication.
The pimitives povided by the hatware are essentially one-to-one with the @fiens aailable
in the programming model.

Within the geneal framewok of Figure 1-15,there has been aegt deal of @olution of shaed
memoky machines as the undiging tedinology advanced The ealy machines wre “high end”
mainframe confjuraions [Lon61,Rdeay]. On the tebnology side memory in edy mainfames
was slow compared to theqmessorso it was necessary to irfeae data across geral memoy
banks to obtain adequate bandwidth for a single processoredhiged an interconnect betgn
the processor and each of the banks. On fipdicaion side these systems exe pimarily
designed for throughput on adgarnumber of jobsThus,to meet the I/O demands of arkload,
seveal I/O channels and deviceew atachedThe I/O channels alsequired direct access dac
of the memory bank3.herefore these systemsenre typically oganizd with across-bar switch
connecting the CPU andwaaal I/O channels to seral memory banks, as indicated Bigure 1-
16a.Adding piocessos was pimarily a matter of expanding theviich; the hadware stucture to
access a memory location from a port on the processor and 1/O side witthevgas unbanged.
The size and cost of the processor limited thedy egstems to a small number obpessors.
As the hadware density and cost impved, larger systems could be contentgld The cost of
scaling the cross-bar became the limitiagtbr,and in many cases it wagptaced by amulti-
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Figure 1-15Extending a system into a shared-memory multiprocessor by adding processor modules

Most systems consist of one or more memory modules accessible by a processor andliéstmough a hak
ware inteconnecttypically a s, cross-bar or mitistage interconnect. Memory and 1/O capacity is increased
attading memor?/ and I/O modules. Sedrmemoy machines allow processing capacity to be increaseddiggd
processor modules

stage inteconnectsugyested byFigure 1-16b,for which the cost increases morewslg with the
number of portsThese savings come at the expense of increasmulaand decreased band-
width per pot, if all are used at onc&he ability to access all memory eatly from each poces-
sor has seeral adrantagesany processor can run any process or handle anyw#i@ and within
the operating system data structures can be shared.
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Figure 1-16Typical Shared-Memory Multiprocessor Interconnection schemes.

The interconnection of multiple pcessorswith their local caches (indicated by $), and 1/O oalfers to nultiple
memory modules may be a cross-bar, multistage interconnection network, or bus.

The widespread use of skdrmemoy multiprocessor designs came about with the 32-bitanicr
processor éwlution in the mid 80s, because thegassorcade, floaing point, and memagr
manag@ment unit fit on a single bai{Bel95], or even two to a boak Most mid-ange madiines,
including minicomputes, severs,workstationsand personal computers argamizd around a
cental memory ls, as illusteted inFigure 1-16a. The standard bus access mechanisnwallo
ary processor to access any physicalrads in the system. Like thavitech based designs, all
memoy locations are equidistant to allgpessorsso all ppcessos expelience the same access
time, or laency,on a memoryaferenceThis confguraion is usually called aymmetric multi-
processor(SMP).. SMPs are hedly used for gecution of parallel migrams,as well as malti-
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programming The typical oganizaion of bus-based symmetricuttiprocessor is illustted ty
Figure 1-17, which describes the rft highly intgraed SMP for the commodity miaat.
Figure 1-18illustrates a high-end seer oiganizdion which distibutes the physical memoryer
the processor modules.

The factoss limiting the number of pcessos that can be supported with a bus-basgdroza-
tion are quite dferent from those in theastch-based pproad. Adding processas to the witch

is expensive howvever,the aygregae bandwidth increases with the number of pdrte cost of
adding a processor to the bus is small, but thgregae bandwidth is fied Dividing this fixed

bandvidth among the lger number of pycessos limits the practical scalability of th@@aroach.
Fortunately,caches reduce the bandwidth demand of eamtepsorsince manyeferences a
satisfed by the cawe, rather than by the memarHowever,with data eplicaed in local cabes
there is a potentially ltallengng problem of keeping the cachesconsistent”, which we will

examine in detail later in the book.

Stating from a baseline of small-scale shared memonhimas,illustrated in the fjures dove,
we may ask Wwat is required to scale the design to agamumber of prcessas. The basic -
cessor component is well-suited to the task, since it is small and economical, but tlearyyia ¢
probdem with the interconnecThe bus does not scale because it hageal figgregae band-
width. The cross-bar does not scalellwbecause the cost increases as the square ofittizen
of ports. Many alterative scalale interconnection netwks eist, such that theggregae band-
width increases as moreguessas are aded,but the cost does not becomeessive We need
to be careful about the resulting increase terlay, because the processor may stall while a
memoy opegtion moves from the processor to the memory module and back. If tdvegteof
access becomes toodat the pocessos will spend rach of their time waiting and the aain-
tages of more processors may be offset by poor utilization.

One naural gpproad to building scalble shared memory machines is to maintain theoumif
memoy access (or “dancehall”)paroat of Figure 1-15 and povide a scaldle interconnect
between the prcessm and the memories. By memory access isanslded into a messgge
transaction wer the netwrk, much as it might be &mslaed to a bus transaction in the SMP
designsThe pimary disadiantag of this @proad is that thewund-tip network latengy is expe-
rienced on every memory access and a large bandwidth must be supplied to every processor.

An altemative gproadt is to interconnect completeqmessorseach with a local memgras
illustrated in Figure 1-19. In this non-unibrm memory access (NUMA)pproach,the local
memoy controller determines whether to perh a local memory access or a mgestansac-
tion with a remote memory cootter. Accessing local memory is faster than accessngpte
memory (The I/0O system may either be a part wéng node or consolidated into special 1/0
nodes,not shown.) Accesses toiyate dda, such as code and skacan often be pesfmed
locally, as can accesses to shared datalilyaaccident or intent, are stored on the local ndbe.
ability to access the local memory gklig does not increase the time to access remote plata-a
ciably, so it reduces thevarage access timeespecially when a lge fraction of the accessesar

1. The term SMP is widely usetut causes a bit of confusidiWhat exactly needs to be symmetric? Man
designs are symmetric in some resp&lbe more precise description ohet is intended by SMP is a slear
memok multiprocessor Were the cost of accessing a memory location is the same fooedlgzorsi.e., it
hasuniformaccess costs when the access actually is to nyethtire location is cawed,the access will be
faster, but still it is symmetric with respect to processors.
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Figure 1-17Physical and logical organization of the Intel PentiumPro four processor “quad pack”

The Intel quad-processor Pentium Pro motherboard gmglim many raltiprocessor seers illustrates the major
design elements of most small scale SMPs. gigéb bock diagram shows there can be up to four processor m
ules,each containing adhtium-Po processorfirst level cadhes, TLB, 256 KB second leel cade, interupt con-
troller (IC), and a bus interface (Bl) in a single chip connectirectirto a 64-bit memory bu3he bus opetes a
66 MHz and memory transactions are pipelinedive @ peak bandwidth of 528 MB/s. Advehip memory con-
troller and bur-chip memory intdeawe unit (MIU) connect the bus to multiple banks of DRAMidges connect
the memory bus to two independent PGsdeswhich host displg, network, SCSI, and lver speed I/O connec-
tions.The Rentium-Po module contains all thedix necessary to support theiliiprocessor comomicaion archi-
tecture,including that equired for memory and cache consistefte stucture of the RBntium-Po “quad pak” is
similar to a lage number of earlier SMP designs, but hasuahmhigher dgree of intgration and is tageted at a
much larger volume.

to local dataThe bandwidth demand placed on the roekws also educedAlthough some con-
ceptual simplicity arises from having all shared data equidistant from acggsorthe NUMA
approab has become far moregwalent because of its inherent perhance adantags and
because it harnesses more of the mainstream processor memory syst@oggdOne aample
of this style of design is the & T3E, illustrated inFigure 1-20 This machineeflects the vier-
point where,although all memory is accessible i®® processorthe distibution of memoy
acloss pocessas is exposed to the ggrammer Caches are used only to hold data (andunostr
tions) from local mmary. It is the pogrammers job to &oid frequent epot referencesThe SGI
Origin is an example of a machine with a similaganizaional stucture,but it allows data sm
ary memory to beaplicaed into any of the caches anadywde hadwarre support to &e these
cadtes consistent, withouelying on a bus connecting all the modules with a common set of
wires.While this book was being vtten, the two dsigns litelly cornverged after the two compa-
nies merged.

To summaize, the comnanicaion abstaction unddying the shared alless spacerpgramming
model is reads and writes to sharettiables,this is mapped one-to-one to a coomitation
abstaction consisting of load and store instructions accessing a global, shdreslsaspace
which is supported dictly in hadware through access to shared physical memory locafitwes.
communicéion astraction is ery “close” to the actual haware Each processor camme
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Figure 1-18Physical and logical organization of the Sun Enterprise Server

A larger scale design is illusted by the Sun Ulaspac-based Entgrise multiprocessor seer. The diggram
shaws its physical strcture and lgical oganizadion. A wide (256 bit), highly pipelined memory bus dets 2.5
GB/s of memory bandwidtiThis design uses a harhical stucture,where each card is either a complete due
processor with memory or a complete 1/0 syst&he full confguraion supports 16 cards of either typégth a
least one of eacfThe CPU/Mem card contains two #sipac processor modules, each with 16 Kielel and 512
KB level-2 cates, plus two 512-bit wide memory banks and an intermatch. Thus, adding pocessos adls
memoy capacity and memory inteaving The 1/O card povides three SBUS slots for I/Gtensionsa SCSI con-
nector,100bT Ethernet porand two FiberChannel interfaces. A typical complete gordiion would be 24 m-
cessos and 6 1/0 cardAlthough memory banks are ysically padkaged with pairs of ppcessorsall
memoy is equidistant from all pcessos and accessed/@r the common us, preseving the SMP
characteristics. Data may be placed anywhere in the machine with no performante impac

Scalable Network

M $ M $ ooo M $

P P P

Figure 1-19Non-uniform Memory Access (NUMA) Scalable shared memory multiprocessor organization.

Processor and memory modules alesely integrated such that access to local memory is faster than acce:
remote memories.

evely physical location in the machine; a process can name all data it shares with others within its

virtual adiress space. Dataatiser is a result of carentional load and store institions,and the
daa is tansfered either as jmitive types in the instruction setytbs,words, etc, or as cale
blocks. Each process perins memory opetions on adresses in its virtual aless space; the
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Figure 1-20 Cray T3E Scalable Shared Address Space Machine

The Ciey T3E is designed to scale up to a thousandessaos supporting.a global shareddagss space
Ead node contains™a DEC Alphaggessorlocal memoy, a hetvork interface intgraed with the
memoy contoller, and a_netwrk switch. The machine is ganizd as a three dimensional culaéth
eat node connected to its six neighbors through 480 MB/s point-to-pointAinksprocessor caread
or write.any memory loden, howvever,the NUMA characteistic of the machine is exposed in the cor
municdion architectire as well as in its pesfmance baracteistics. A short sequence of instructions
required to esthlish adiressaility to remote memar, which can then be accessed by \amtional
loads and store3he memory controller gaures the access to a remote memory and conducts a
sage transaction with the memory controller of the remote node on the Icmm‘, ssois behalf.The
messag transaction is automeall%/ routed through intenediae nodes to the desired destion, with
a small delay per “hopThe remote data is typically not ¢exl,since there is no hdware metanism
to keep it consistent. (We will look at other design points that allow shared datadplizeted though-
out the processor cacheghe Cay T3E I/O system is disbuted aer a collection of nodes on the su
face of the cube, which aré conhected to the external world through an addition 1/O network

addess tansldion process identifies a physical Itica, which may be local or remote to the
processor and may be shared with other processes. In eithertteadeadware accesses it
directly, without user or opeting system softare intevention.The adiress tanslaion realizes

protection within the shared dibss spaggust as it does for unipcessorssince a process can
only access the data in its virtual drelss spaceThe efectiveness of the shared memor

approab depends on thetlng/ incurred on memory accesses, as well as the bandwidthtaf da

transkr that can be supped Just as a memory stae hiearcty allows that data that is bound
to an adress to be migted tavard the pocessorexpressing commnicaion in terms of the
storag adiress space allows shared data to beratdd tavard the processor that accesses it.

However,migrating and eplicaing data across aegeal purpose interconnect presents a unique

set of dallenges.We will see that to dgeve scalability in such a design it is necegshut not
sufficient,for the hadware interconnect to scale welthe entire solution, including the ntec

nisms used for maintaining the consistent shared memory abstractions, must also scale well.

1.3.3 Message-Passing

A second important class of parallel maes,message passingdahitecturesemploys complete
computes as building lwcks — including the miaprocessomemory and I/O system — andpr
vides commnicaion between pcessos as explicit /0 opetions. The high-leel block dia-
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gram for a mesgge passing machine is essentially the same as the NUMAdshaagmory
approachshown inFigure 1-19 The pimary difference is that comamicaion is intgyraed a
the 1/O level, rather than into the memory systemhis style of design also hasush in common
with networks of workstationspr “clusters”, except the pakagng of the nodes is typically nch
tighter, there is no monitor or direct user access, and theorlef® of nuch higher caability
than standard local area netl. The integration between the processor and the ogkvtends to
be nuch tighter than in traditional 1/0 stctures,which support connection to devices that ar
mud slaver than the prcessorsince mesgge passing is fundamentallygmessor-to-processor
communication.

In messge-passing there iegeraly a substantial distance between thegmming model and
the comnanicaion opertions at the physical hdware level, because user conumicdion is
performed through opeting system or libary calls which perbrm many laver level actions,
including the actual comuamicaion opeetion. Thus,the discussion of mesgpassing kgins
with a look at the comomicdion astraction,and then befly suveys the golution of hadware
organizations supporting this abstraction.

The most common uségvel comnunicaion opegtions on messge passing systems arariants
of sendandreceive In its simplestdrm, send specifies a local datffer that is to be émsmitted
and a eceving process (typically on a remote processor). Recgpecifies a sendingquess
and a local datauffer into which the transmitted data is to be plac&dgether,the maching
send andecei\e cause a dataainser from one process to anothas indicated ifrigure 1-19. In
most messge passing systems, the send apen also allows an identifier ¢ag to be #tached
to the mesgge and theaceving opestion specifies a mehing le, such as a specific tag from a
specift processorany tag from any pcessarThus,the user psggram names local adesses and
entiies in an bstract pocess-tg space.The combination of a send and a matchiegeive
accomplishes a memory to memory copy, where each end specifies its local data address, and
pairwise synchronization evemther are seeral possible &iiants of this synlgronizaion event,
depending upon whether the send completes wheretteie has beenxecuted when the send
buffer is aailade for reuse,or when the request has been pteg Similady, the eceiwe can
potentialy wait until a m&ching send occurs or simply post theeeive Each of theseariants
have somewhat different semantics and different implementation requirements.

Messag passing has long been used as a means of woicaion and synbronizaion among
arbitrary collections of coopeting sequential mcesseseven on a single pcessarimpotant
examples include mgramming languges,such as CSP and Occam, and commonatipgrsys-
tems functions, such as $ets. Riallel programs using mesga passing are typically quite
structured)ike their shaed-memoy counter parts. Most often, all node®eute identical copies
of a pogram,with the same code andiyate variades. Usualy, processes can hame each other
using a simple linear ordering of the processes comprising a program.

Early messge passing machinesgwided hadware pimitives that vere very close to the simple
send/receig useflevel comnunicaion abstractionwith some additionakstictions. A node \as
connected to aXed set of neighbors in agular patem by point-to-point links that betiad as
simple FIFOs[Sei85]This sort of design is illusited inFigure 1-22 for a small 3D cube. Most
early machines wre hypercubeswhere each node is connectedto other nodésrii§) by one
bit in the binary adress,for a total of2" nodes, anesheswhere the nodes are connect to
neighbos on two or three dimensionshe netvork topolagy was especially important in the
early messge passing mdnes,because only the neighboringoppessas could be named in a
send or eceive opestion. The data tnser involved the sender writing into a link and the
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Figure 1-21User level send/receive message passing abstraction

A data tenser from one local adfess space to another occurs when a send to a particular procetcheiméth
a received postd by that process.

receiwer reading from the linkThe FIFOs vere small, so the sender would not teao finish
writing the messge until the eceiwer started reading it, so the send woutstk until the eceive
occured In modern terms this is callexynchronousmessge passing because the tweeets
coincide in time.The details of moving dataese hidden from the pgrammer in a mesge
passilng libary, forming a lger of softvare between send andaeiwe calls and the actual ftar
ware:

The direct FIFO design was soaplaced by moreersdile and moreabust designs Wich pro-
vided direct memory access (DMARtrsfes on either end of the conumicaion event.The use
of DMA allowed non-blockingsends,where the sender isbée to initiate a send and contie
with useful computation (orven perbrm a eceiwe) while the send completes. On tkegiving
end,the tanskr is accepted via a DMAanser by the mesgg layer into a biffer and queued
until the taget process pesfms a méching receive,at which point the data is copying into the
address space of the receiving process.

The physical topolgy of the commnicaion network dominated the gramming model of
these edy machines and parallel @idthms were often stated in terms of a specific iot®Mmec-
tion topolay, eg., a ling, a gid, or a lypercube[F&*88]. However,to make the machines nsor
general useful, the designers of the meagsdayers piovided support for commmication
between arbitary processorstather than only between physical neighbors[NKjis was oigi-
nally supported bydrwarding the data within the meggalayer along links in the netovk. Soon
this routing function was mved into the hatware,so each node consisted of a processor with
mmory, and a witch that could érward messsges,called a outer However,in this store-and-
forward gpproad the time to nsker a messge is popottional to the number of hops it &k

1. The motvation for syntironous mesge passing was not just from the machinadtre; it
was also was also present in importamgmmming languges,especially CSP[***CSP]. E&y
in the micoprocesor era thepproad was catured in a single chip buildingldxck, the Trans-
puter, which was widely touted during its development by INMOS as a revolution in computing.
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Figure

1-22 Typical structure of an early message passing machines

Each node is connected to neighbors in three dimensions via FIFOs.

134

through the netark, so there remained an emphasis on interconnection tpp(See
Exercise 1.7)

The emphasis on netrk topolagy was signiftantly reduced with the introduction of morerg
eral purpose netarks, which pipelined the mesga transer through each of theuters forming
the interconnection netwk[Bar*94,BoR089,Dun88,HoMc93,Lei*92,PiRe94,VEi*92]. In most
moden messge passing mdignes,the incremental delay introduced by each router is small
enough that theansgr time is dominated by the time to simplyvadhat data between theopr
cessor and the nebnk, not how far it tavels.[Gp92,HoMc93,Hor*93PiRe94T his geatly sim-
plifies the ppgramming model; typically the pcesscs are vieved as simplydrming a linear
sequence with urdfm comnunicaion costs. In other wrds, the comnunicaion astraction
reflects an aganizdional stucture much as inFigure1-19. One important example of duc
madine is the IBM SP-2, illustted in Figure 1-23, which is constructed from ceantional
RS6000 werkstationsa scaléle network, and a netwrk interface containing a dedicatespes-
sor Another is the Intel &agoniillustrated in Figure 1-24, which intggraes the netark inter
face more tightly to the pcesscs in an SMP nodes,here one of the mrcessaos is dedicated to
supporting message passing.

A processor in a mesga passing machine can name only the locations in its local njeamar
it can name each of theqmesorsperhaps by number or bgute A user process can only name
private addresses and other processes; it can transfer data using the send/receive calls.

Convergence

Evolution of the hadware and softwre has hurred the once clear boundary between theeshar
memok and messge passing campsirBt, consider the comumicaion opegtions aailale to
the user process.
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Figure 1-23 IBM SP-2 Message Passing Machine

The IBM SP-2 is a scabte parallel machine constructed essentially out of complete RS6@@8taions. Modest
modificgions are made to pkagng the workstdions into standingadks. A netvork interface card (NIC) is
inseted at the MicroChannel I/O buBhe NIC contains the thers for the actual link into the netnk, a substan-
tial amount of memory touffer messge dda, and a complete 1960 mmprocessor to me data between host
memok and the netark. The netvork itself is a litterfly-like stucture,constructed by cascading 8x&ss-bar
switches.The links opeate at 40 MB/s in each diction,which is the full caability of the I/O bus. Seeral other
madine employ a similar netwk interface design, but connectelitly to the memory bs, rather than at the 1/0
bus.

* Traditional messge passing opetions (sendgceiwe) are supported on most shared mgmor
madines through sharediffer stoage Send inolves writing d#éa, or a pointer to da, into
the huffer, receiwe involves reading the data from shared ag@r Flags or locks are used to
control access to the buffer and to indicate events, such as message arrival.

* On a mesgge passing mdgne,a user process may construct a globdress space of sisr
by carying along pointers specifying the process and local virtudiead in that mrcess.
Access to such a global dgrdss can be perfmed in softvare,through an explicit mesga
transaction. Most mesga passing litaries allow a process to accept a mgsestr “any”
processso each process canweedata requests from the others. gidal read is ealizd by
sending an request to the process containing the objeceesidng a esponseThe actual
messag transaction may be hidden from the user; it may lréedaout by compiler gner-
ated code for access to a shared variable.[Split-C,Midway,CID,Cilk]
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Figure 1-24 Intel Paragon

The Intel Rragn illustrates a nuch tighter pakagng of nodes. Each card is an SMP with two or more i860 p
cessos and a netark interface chip connected to the baecoheent memory bus. One of theogessas is dedi-
caed to servicing the netwk. In adlition, the node has a DMA engine tariser contiguous chunks of data to an
from the netwrk at a high ate The netverk is a 3D gid, much like the Cay T3E, with links opesting at 175 MB/
s in each direction.

* A shared virtual adress space can be ddished on a mesga passing machine at thegea
level. A collection of processesVYea egon of shared adtessesbut for each process gnl
the paes that are local to it are accessitbJpon access to a missing (j.eemote) pge, a
page fault occurs and the opting system enages the remote node in a megs#ansaction
to transfer the page and map it into the user address space.

At the level of machine aganization,there has been substantial wengence as well. Moder
messag passing @hitectues appear essentially identical at thack diagram level to the scal-

alle NUMA design illusteted inFigure 1-19. In the shared memory casbe netverk interface

was intgrated with the cache controller or memory colfiér, in order for that device tobserve
cate misses and conduct a m@gstansaction to access memory in a remote node. In the mes-
sa@ passing gproachthe netverk interface is essentially an 1/Owdee. However,the trend has
been to intgrae this device more dply into the memory system aslly and to tanser dda
directly from the user attess space. Some designevisle DMA transfes across the netwk,

from memory on one machine to memory on the othehmegso the netwrk interface is inte-
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graed fairly degly with the memory system. Meggapassing is implemented on top of these
remote memory copies[HoMc92]. In some designs a complete processor assists imicamm
tion, sharing a cdee-coheent memory bus with the mainquessor[Gro92,PiRe94,HoMc92].
Viewing the comergence from the other sidelearly all large-scale shared memory optons
are ultimately implemented as message transactions at some level.

In addition to the corergeence of scalde messge passing and shared memory hiaes,
switched-based local area netiks, including fast etheret, ATM, FiberChanneland seeral
proprietay design[Bod95, Gil96] hae emeged, providing scaldle interconnects that ar
approabing what traditional parallel machinesfef. These new netarks are being used to con-
nect collections of mdxines,which may be shad-memoy multiprocessas in their own ight,
into clusters which may opeste as a parallel machine on individualgeupioblems or as man
individual machines on a uftiprogramming load Also, essentially all SMP endos piovide
some form of network clustering to obtain better reliability.

In summay, messge passing and shaedaddess spacespresent two kearly distinct pogram-
ming models, each gviding a well-defined paradigm for shiaig, comrunication,and synbro-
nizaion. Howvever, the unddying machine strctures hae cowverged tavard a common
organizationyepresented by a collection of complete compsjtengmented by @ommunication
assistconnecting each node to a sbédacomnunicaion network. Thus,it is naural to consider
suppoting aspects of both in a commoirtewok. Integraing the commnicaion assist mar
tightly into the memory system tends to reduce tkenkg of network transactions and impve

the bandwidth that can be supplied to or accepted from therketve will want to look nuch
more caefully at the precise mare of this intgration and understand how it interacts withloac
design, address translation, protection, and other traditional aspects of computer architecture.

1.3.5 Data Parallel Processing

A third important class of parallel machines has bewiousy called: processor @ys,single-
instruction-multiple-dt&a madines,and data parallel ehitectues.The dangng nameseflect a
gradual sparaion of the usetevel abstiaction from the machine omtion. The key characteris-

tic of the programming model is that operations can be performed in parallel on each element of
a large regular data strcture, such as an array or matriXhe pogram is l@ically a single

thread of conwl, carying out a sequence of either sequential or parallel St¢éigisin this gen-

eral paadigm,there has been manyvab designs, exploitingarious tetinologcal oppotuni-

ties, and considextle evolution as miooprocessor tdmology has become such a dontima
force.

An influential paper in the dagr70's[Fly72] deseloped a taxonomy of compuseknown as
Flynn's taxonomy, which characteries designs in terms of the number of distinct irtdions
issued at a time and the number of data elements thest@per Corentional sequential com-
putess being single-instiction-single-dta (SISD) and parallel machines built from multiple con-
ventional pocessa being nltiple-instruction-multiple-d&a (MIMD). The revolutionary
alternatiee was single-instiction-multiple-déa (SIMD). Its history is rooted in the mid-60s
when an individual processor was a cabinet full of equipment and an instrigttiorcdst as
much in time and halware as pedrming the actual instructioffhe idea was that all the inst-
tion sequencing could be consolidated in the contaigssarThe data prcessos included onyf

the ALU, memory, and a simple connection to nearest neighbors.
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In the edy data parallel mdgnes,the data parallel pgramming model wasendeed directly in
the physical halware[Bal*62,Bou*72,Cor72,Red73,Slo*62,Slot67,ViCo78lypically, a con-
trol processor broadcast each instruction to aayaf data processing elements (PEshjoh
were connected toofm a egular gid, as sugested byFigure 1-25 It was obsered that mapn
important scientific computationsvialved unibrm calculation onwery element of an aay or
matrix, often irvolving neighboring elements in thew or column.Thus, the parallel psblem
daa was distbuted over the memories of the dateopesscs and scalar data was retained in the
contol processols memoy. The control processor instructed the datecpssas to each peofm
an opegtion on local data elements or all to penfi a comnanicaion opestion. For ékample,to
avera@ each element of a mnix with its four neighbaos, a copy of the ntaix would be shifted
acioss the PEs in each of the four directions and a local adation perbrmed in each PE. Da
PEs typically included a conditionafj, allowing some to abstain from an ogén. In some
designsthe local adress can be specified with an indireali@dsing modeallowing piocessors
to all do the same operation, but with different local data addresses.

Control
Processor

Figure 1-25Typical organization of a data parallel (SIMD) parallel machine

{ndiviltlju%llkw/lrocessing elements (PEs) iin lok-stegp under the direction of a single controbpessarTradi-
ionally,
later machines, such as t

D machines E]nvide_a limited regular interconnect among the PEs, although this wasrmglizd in
e Thinking Machines Connection Machine and the MasPar.

The deelopment of amays of plocessas was almost completely eclipsed in the mid 70s with the
dewelopment ofvector pocessorsin these mdtines,a scalar processor is igteted with a col-
lection of function units that opate on \ectoss of data out of one memory in a pipelinadtfion.
The ability to opeste on \ectoss arywhere in memory eliminated the need to mayplacation
data stuctures onto aigid interconnection sticture and geatly simplified the poblem of getting
daa aligned so that local omtions could be peoirmed The first vector pocessorthe CDC
Star-100 provided vector opetions in its instruction set that combined two soureetes from
memolk and produced a result vector in mendhe machine only opatied at full speed if the
vectos were contiguous and hence adaifraction of the xeecution time was spent simphatrs-
posing méices. A damadic chang occured in 1976 with the introduction of thea¥1, which
extended the concept of a load-storehdtectue emplged in the CDC 6600 and CDC 7600 (and
rediscoveed in modern RISC machines) tppdy to vectoss. Vectors in memoy, of any fked
stride, were transfered to or from contiguous vectoegistes by vector load and store instr
tions. Arithmetic was pedrmed on the vectoregistes. The use of aery fast scalar mrcessor
(operding at the unprecedenteate of 80 MHz) tightly intgrated with the vector opations and
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utilizing a lage semiconductor memgrrather than cae, took over the vorld of supecomput-
ing. Over the next twentyeas Cry Reseath led the supercomputing nkat by increasing the
bandvidth for vector memory émsfersjncreasing the number ofqaressorsthe number of ec-
tor pipelines, and the length of the vectegistersresulting in the pedrmance gowth indicaed
by Figure 1-10 and Figure 1-11.

The SIMD data parallel machinepeienced a renaissance in the mid-80s, as VLShacks
made simple 32-bit processor just ddgr practical[Bat79,Bat80,Hill85,Nic90[iR0o88]. The
unique twist in the data parallelgme was to place thiy-two very simple 1-bit processing ele-
ments on eachhip, along with serial connections to neighboringgassorswhile consolidéing
the instruction sequencingpability in the control pocessarlin this way, systems with sesral
thousand bit-serial processing elements could be constructedsainale cost. In adition, it
was ecognizd that the utility of such a system could be increasachatical with the povi-
sion of a @neal interconnect allowing an arkaiy comnunicaion patem to take place in a sin-
gle rather long stp, in addition to theagular gid neighbor connections[Hill85,HiSt86,Nic90].
The sequencing mechanisnhiegh expands carentional intger and fbaing point opeations
into a sequence of bit serial opgigons also povided a means divirtualizing” the pocessing
elementsso that adw thousand processing elements cae ¢he illusion of opeting in paallel
on millions of data elements with one virtual PE per data element.

The tetinologcal factos that made this bit-serial desigtractive also povided fast,inexpen-

sive, single-chip fbaing point units, andapidly gave way to very fast micoprocessa with inte-
graed floaing point and cachesThis eliminated the cost wsdntag of consolidating the
sequencing Igic and povided equal peak paenfimance on a och smaller number of complete
processa@. The simple regular calculations on lge mdrices which motivated the data palel
approab also hge tremendous spatial and temporal localitythe computation is perly
mapped onto a smaller number of completegassorswith each processoesponsite for a

large number of Igically contiguous data points. Caches and local memory can be brought to
bear on the set of data points local to each pnetide comnunicaion occurs across the bound-
aries or as a global rearrangement of data.

Thus,while the usetevel abstaction of parallel opations on lage regular data strctures con-
tinued to ofer an #ractive solution to an important class obptems,the machine ganization
employed with data parallel pgramming modelswlved tavards a more gneic parallel achi-
tectureof multiple coopeating microprocessorgnuch like scaldle shared memory and megsa
passing mdtnes,often with the inclusion of specialized netk support for global syroni-
zation,such as darrier , which causes each process to wait at a particular point in digeaon
until all other processes V& read that point[Hor93,Lei*92,Kim92,KeSc93,Ke*94]. Indeed
the SIMD gproad evolved into the SPMD (single-pgram-multiple-d&a) goproach,in which
all processa execute copies of the sameogram,and has thus lgely corverged with the maoz
structured forms of shared memory and message passing programming.

Data parallel ppgramming languges are usually implemented by viewing the locadrads
spaces of a collection of qmessespne per pocessoras brming an explicit global attess
space Data stuctures are laid out across this globatieess space and there is a simplepirag
from indexes to processor and local offsEhe computation is ganizd as a sequence ‘tiulk
synchronous’phases of either local computation or global camiteation,separaed by a global
barrier[cite BSP]. Because all pcessos do commnicaion together and there is a global wie
of wha is going on, either ahaed addess space or meggapassing can be emphkxl For
example,f a phase imolved every processor doing a write to andaess in the processor “to the
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1.3.6

left”, it could be ealizzd by each doing a send to the left andaire “fr om the ight” into the
destingion address. Simildy, every processor reading can beatizzd by @ery processor send-
ing the adress and thervery processor sending back the data.det,the code that is pduced
by compilers for modern data parallel langes is essentially the samefasthe stuctured con-
trol-parallel programs that are most common in gdsmemoy and messge passing [@gram-
ming modelsWith the corergence in machine stcture,there has been a a@rgence in ha
the machines are actually used.

Other Parallel Architectures

The mid-80s renaissancawg rise to seeral other achitectual directions vkich received con-
sideralbe investigdion by academia and indugtibut enjyed less commercial success than the
three classes discusseldose and thexfore expelienced less use as ehide for parallel po-
gramming Two gpproadies that ere developed into complete pgramming systems &re dda-
flow architectues and systolic ahitectues. Both epresent important conceptualvééopments

of continuing value as the field evolves.

Dataflow Architecture

Dataflav models of computation sought to make the essential aspects of a parallel tomputa
explicit at the machine 1el, without imposing aificial constraints that would limit thevailable
pamllelism in the pogram. The idea is that the pgram is epresented by argph of essential
daa dependencesas illustated in Figure 1-26, rather than as aXed collection of gplicitly
sequenced threads of control. An instruction magcete vineneer its data operands aread-

able The gaph may be spread arlatily over a collection of pycessas. Each node specifies an
operaion to perbrm and the adress of each of the nodes that need the result. In thi@ar
form, a processor in a thflov machine opetes a simple circular pipeline. A megsaor token
from the netwrk consists of data and andrdss.or tag, of its destination nod&.he tag is com-
pared a@jainst those in a nehing stoe. If present,the maching token is etracted and the
instruction is issued forx@cution. If not, the token is placed in the storewaitits patner.
When a result is computed new messge, or token, containing the result data is sent to each of
the destinations specified in the instructibhe same mechanism can be used whether the suc-
cessor instructions are local or on some remaiegssarThe pimary division within daaflow
architectues is whether thergph isstatic, with each nodeapresenting a pmitive opeation, or
dynamic in which case a node cagpesent the wocdion of an arbitary function, itselfrepre-
sented by amgph. In dynamic otagged-tokerarchitecturesthe efect of d/namically expanding

the gaph on function imocaion is usually akieved by carying additional context imfrmation

in the tag, rather than actually modifying the program graph.

The key characteistic of ddaflow architectues is the ability to name otions perbrmed ay-
where in the makine, the support for syrmonizaion of independent opations,and g/namic
scheduling at the machinevel. As the d&aflov machine designs rhaed into real systems, @+
grammed in high teel parallel languges,a more coventional smcture emeged Typically, par
allelism was gneraed in the pogram as a result of parallel function calls and parallel loops, so it
was dtractive to allocate these lgar chunks of wrk to pocessos. This led to a dmily of
designs agyanizd essentially like the NUMA design Bigure 1-19. The ley differentiaing fea-
tures being direct support for a d@; dynamic set of threads of control and the gndigon of
communicéion with thread gnerdion. The netvark was dosely integrated with the pocessor;

in many designs theurrent messge” is available in special egistersand there is hdivare sup-
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Figure 1-26Dataflow graph and basic execution pipeline

port for dispdching to a thread identified in the megadn adlition, many designs pvide extra
stae bits on memory locations in order tayide fine-gained synhbronization,i.e., syndroni-
zdion on an element-by-element basither than using locks to symmniz accesses to an
entire data strcture In paticular, each mesgg could schedule a chunk of computatiomick
could make use of local registers and memory.

By contast,in shared memory machines onengraly adopts the view that a static orslp
varying set of processes op¥ within a shared alless spaceso the compiler or pgram mas
the lggical parallelism in the mgram to a set of processes by assigning looptiters, maintain-
ing a shared wark queue or the like. Similaly, messge passing ppgrams ivolve a stéc, or
neary staic, collection of processeshich can name one another in order to camizate In
daa parallel azhitecturesthe compiler or sequencer maps géaset of'vir tual plocessor'oper
ations onto pocessas by assigning itetions of a egular loop nest. In the taflow case the
madine povides the ability to name aew large and dynamic set of threadsish can be
mapped arbitarily to processas. Typically, these machines grided a global adress space as
well. As we hae seen with mesga passing and data parallel hiaes,daaflow architectures
expefenced a tpdual spardion of programming model and hdware stucture as the gproach
matured.
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Systolic Architectures

Another neel goproat wassystolic achitectures which sought to éplace a single sequential
processor by aegular aray of simple processing elements abg caefully orchestréing the
flow of data between PEs, obtaiany high throughput with modest memory bandwid#guire-
ments.These designs dér from cowentional pipelined function units, in that theagrstucture
can be non-lineae.g hexagonalthe pghways between PEs may beutidirectional,and eab
PE may hae a small amount of local instruction and data mgminey differ from SIMD in
that each PE might do a different operation.

The ealy proposals wre diven by the opportunity &dred by VLSI to povide inexpensie spe-
cial purpose chips. Aigen algrithm could be epresented dectly as a collection of speciaéd
computaional units connected in agular,space-dfcient patem. Data would mee through the
system ategular “heartbeats”as determined by local staFigure 1-27 illustrates a designof
computing cowolutions using a simple linearray. At each beat the input datavadces to the
right, is multiplied by a local wight, and is accumlated into the output sequence as it also
adwances to the righfThe systolic pproat has aspects in common with megspassingdaa
parallel,and d#aflov models, but takes on a unique@cter for a specialized class obpltems.

Practical ealizaions of these ideas, such asaiy{Bor*90], provided quite gneal programma-
bility in the nodes, in order for awety of algprithms to be ealizzd on the same hiaware The
key differentidion is that the netark can be confjured as a collection of dedicatedannels,
representing the systolic commicaion pdtern, and data can beansfered diectly from pro-
cessor egistes to processolegistes across a channdlhe global knwledge of the commnica-
tion patem is exploited to reduce contention anéreto aoid deadlockThe key characteristic
of systolic achitectues is the ability to ingrate highly specialized computation under a simple
regular, and highly localized communication patterns.

y(i) = w1*x(i) + w2*x(i+1) + w3*x(i+2) + wa4*x(i+3)

x8 X6 x4 X2
— X/ —pp X5 —p| X3 |—o| X1 |—> — —>
—_ — a4 B mma B2 mng B2 mng B
y3 y2 yl

xin , xgut

X xout = x
X =Xin
—% , [ yout=yin+w*xin
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Figure 1-27Systolic Array computation of an inner product
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Systolic algrithms hae also beenaneraly amenéale to solutions on gneic machinespusing
the fast baier to delineate coarserained phasedhe regular,local comnunicaion patem of
these algrithms yield good locality when Ige portions of the Igical systolic aray are eecuted
on each pcessthe comnunicaion bandwidth needed lsw, and the syrfrronizaion require-
ments are simpl&.hus,these algrithms hae proved efective on the entire spectrum of pHel
machines.

A Generic Parallel Architecture

In examining the wlution of the major pproates to parallel @hitecture we see a clear con-
vergence for scalde machines wward a gneic parallel machine ganization,illustrated in
Figure 1-28 The machine comprises a collection of essentially complete corapedeh with
one or more pcessos and memg;, connected through a schllea comnunicaion network via
communications assisgpme kind of controller or auxiliary processing urlitiehh assists in en-
eraing outgoing mesges or handling incoming meggs. While the consolidation within the
field may seem to namw the interesting design spade fact, there is gea diversity and déate
as to vha functionality should be prided within the assist and how it interfaces to treces-
sor, memory system, and natvk. Recognizing that these are specifidfadédnces within a
largely similar oganizdion helps to understand andaiae the important @anizaional trade-
offs.

Not suprisingly, different ppgramming models place @i#rent iequirements on the design of the
communicéion assist, and influencehich opegtions are common and should be optiedizin

the shared memory cadbe assist is tightly intgaed with the memory system in order tgpea
ture the memory vents that mayequir interaction with other nodeélso, the assist mnst
accet messges and pedrm memory opetions and state transitions on behalf of other nodes.
In the messge passing caseomrmunicdion is initiated by explicit actions, either at the system
or user leel, so it is not equired that memory systemvents be obseed Insteadthere is a need

to initiate the mesggs quikly and to respond to incoming megssa. The response magquire

tha a tag mech be perbrmed,that huffers be allocted, that data inser commenceor that an
ewent be postedihe data parallel and systolip@oates place an emphasis on fast global syn-
chronizationwhich may be supported dictly in the netwrk or in the assist. Daflow places an
emphasis on fast dynamic scheduling of computation based on an incomingenggs#olic
algoiithms present the opportunity to exploit globatteas in local sheduling Even with these
differencesjs important to obsge that all of thesepproahes share common aspects; they need
to initiate netvark transactions as a result of specific procesgents,and they need to perm
simple operations on the remote node to carry out the desired event.

We also see that aprdion has emeyed between mgramming model and machineganiza-
tion as parallel prgramming emironments hee maured For xample,Fortran 90 and High &-
formance Brtran povide a shagd-addess dea-pasmllel programming model, WWich is
implemented on a wideinge of matines,some supporting a shared physicalrads spaceth-
ers with only messge passingThe compilation techniques for these machinefedifdically,
even though the machines appeayamizationaly similar, because of diérences in comnmica-
tion and synbronizdion opestions povided at the user Vel (i.e, the communicaion astrac-
tion) and vast dferences in the pesfmance baracteistics of these comumicaion opeations.
As a secondxample,popular mesgge passing likaries,such as PVM (parallel virtual miaioe)
and MPI (messge passing integice),are implemented on this samange of madines,but the

62

DRAFT: Parallel Computer Architecture 9/10/97



Fundamental Design Issues

implementsion of the libares difer diamaticaly from one kind of machine to anoth@he
same observations hold for parallel operating systems.

( Network >

$ /
P

Figure 1-28Generic scalable multiprocessor organization.

A collection of essentially complete compw@iencluding one or more pressc and memg; comrrunicating
through a gneal pumpose,high-perbrmance,scaldle interconnectTypically, each node contains a casiter
which assists in communication operations across the network.

1.4 Fundamental Design Issues

Given how the state of the art in parallathdtectue has adancedwe need to take a fresh look
a how to oganiz the body of meial in the feld. Traditional machine taxonomies, such as
SIMD/MIMD, are of little help since multipleegenl purpose mrcessog are so dominant. One
cannot focus entdly on pogramming models, since in many cases widelyedifg madine
organizaions support a common ggramming model. One cannot just look atdwaare stuc-
tures,since common elements are enygld in many dfierent way. instead we ought to dcus
our attention on the ehitectual distinctions that make a tifence to the softare that is toun

on the mabkine In paticular, we need to highlight those aspects that influence how a compiler
should gnerge code from a high-lel parallel languge,how a libary writer would code a ell-
optimized library, or how an pplicaion would be written in a lo-level parallel languge We
can then pproat the design mblem as one that is constrained froboee by how pograms use
the machine and from below by what the basic technology can provide.

In our view, the guiding principles for understanding modern paraliitectue are indicted
by the lgyers of astaction presented iRigure 1-13. Fundamentayi we must understand the
operdions that are mvided at the usdevel comnunicaion astractionhow various pogram-
ming models are mapped to thesenitives, and how these pnitives are mapped to the actual
hardware Excessie emphasis on the highvled programming model without attention to how it
can be mapped to the machine would detract from understanding the fundanuéiteedtaral
issues,as would gcessie emphasis on the specific thaare mechanisms in each fianlar
machine.

This section looks mordasely at the commanicaion abstraction and the basiequirrments of a
progamming model. It then defines momerhally the ley concepts that tie gether the lgers:
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naming,ordering,and commnicaion and eplicaion of data. ially, it introduces the basic per
formance models required to resolve design trade-offs.

Communication Abstraction

The comnanicaion abstraction brms the ky interface between theggramming model and the
system implementation. It plays a rolenywmuch like the instruction set in ceentional sequen-
tial computer ahitecture Viewed from the softare side it must hae a pecise,well-defined
meaning so that the samebgram will run corectly on many implementations. Also the oger
tions povided at this Iger must be simpleeomposhble entities with clear costs, so that the soft-
ware can be optimized for permanceViewed from the hatware side it also must hee a vell-
defined meaning so that the machine designer can deterrhieie perbrmance optimizéons
can be pedrmed without violating the softave assumptiondVhile the dstraction needs to be
precisethe machine designer would like it not to ey speciftc, so it does not prohibit useful
techniques for pedrmance enhancement oustrae eforts to exploit popeties of never teh-
nologies.

The comnunicdion &straction is, in dect, a contract between the darare and the softare
allowing each the &ibility to improve wha it does, while wrking correctly together To under
stand theé'terms” of this contact,we need to look more aully at the basicaguirments of a
programming model.

Programming Model Requirements

A parallel ppgram consists of one or more threads of control atjpey on data. Aparallel pro-
gramming modespecifies wat data can b@amedby the theads,what operationscan be per
formed on the named data, and whiatering exists among these operations.

To make these issues coeter,consider the mgramming model for a unipcessarA thread can
name the locations in its virtual déss space and can name machéggstes. In some systems
the adiress space is bken up into distinct codestadk, and heap ggnentswhile in others it is
flat. Similafy, different ppgramming languges povide access to the dekss space in ddrent
ways; for ekample,some allow pointers and dynamic sige allocaion, while others do not.
Regadless of theseariations,the instruction set pvides the opetions that can be penfmed
on the named locations. Faranple,in RISC machines the thread can load data from oe stor
daa to memay, but perbrm arithmetic and comparisons only on dateegistes. Older instuc-
tion sets support arithmetic on either. Compilers typically mask thdeeedites at the hdware/
softwae bounday, so the user’s pgraming model is one of peniming opesations on \ariables
which hold dataThe hadware transldes each virtual atfess to a physical ddess on eery
operation.

The odeling among these opations issequential program oler — the pogrammers view is
tha variabes are read and modified in the top-to-bottom, left-to-right order specified inothe pr
gram. More pecisely,the value etumed by a read to an dess is the last value written to the
addess in the sequentiatecution order of the pgram.This odeling assumption is essential to
the Iagic of the ppgram. Havever,the reads and writes may not actually be qgraréd in po-
gram oder, because the compiler penfns optimizations whendnslding the pogram to the
instruction set and the hdware perbrms optimizations whenxecuting the instructions. Both
make sure the mgram cannot tell that the order has bebanged The compiler and hdware
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presere thedependence der. If a varialde is written and then read later in thegiam oder,
they make sure that the later ogigon uses the properiue,but they may eoid actually witing
and reading the value to and from memory or may defer the write detilCallections of eads
with no intewening writes may be completelyardeed and generally, writes to diferent
addesses can beordeed as long as dependences from irgBing reads are gservedThis
reordeing occurs at the compilationviel, for example,when the compiler allocateanales to
registersmanipulatesgressions to impve pipelining or transfoms loops to reduceverhead
and imppve the data accesstpan. It occurs at the machinevkd when instructionecution is
pipelined,multiple instructions are issued pgcke, or when write bffers are used to hide mem-
ory latency We depend on these optimizations for parfance They work because for the pr
gram to obsere the effect of a wite, it must read theariable,and this ceaes a dpendence,
which is peservedThus,the illusion of pogram order is prsered while actually xecuting the
program in the looser dependenceler’ We opeate in a vorld where essentially all mgram-
ming languges embody a pgramming model of sequential order of cgiEms on \ariakdes in a
virtual adiress space and the systemoecds a vealer order viherewer it can do so withouteg-
ting caught.

Now let’s retum to parallel ppgramming modelsThe informal discussion earlier in thihapter
indicated the distinct positions adopted on namiogegtion set, and atering Naming and
operdion set are \va typically characterie the models, eever,ordeling is of key importance.

A parallel ppgram must codatinate the activity of its threads to ensure that thpedeences
within the pogram are erdrced; this requires explicit synchronization operations when the
ordering implicit in the basic operations is not sufficiekg architects (and compiler writers) we
need to understand thedering propeties to see Wa optimization“tricks” we can play for per
formanceWe can focus on shareddrdss and mesga passing mgramming models, since the
are the most widely used and other models, such as dakepare usually implemented in
terms of one of them.

The shared attess space pgramming model assumes one or more threads of alpetd
operding in an adress space kich contains aegon that is shared between ¢ads,and mg
contain a egon that is pivate to each thgad Typically, the sharedegon is shared by all
threads. All the opetions defined on jrate adiresses are defined on sharedradsesin patic-
ular the pogram accesses and updates shaegilies simply by using them irxpressions and
assignment statements.

Messag passing models assume a collection of processes eactingpar a pivate adlress
space and eactbla to name the other process€he normal uniprocessor opdons are po-

vided on the pvate adiress spacen program oder. The additional opetions,send andaceive,
operde on the local attess space and the global process space. Samafets data from the
local adiress space to a process. Reeeiccepts data into the locabaeks space from aguess.
Eadh sendfeceiwe pair is a specific point-to-point symwonizdion opegtion. Many messge

passing languges ofer global orcollective communicaion opegtions as ell, such as hwad-

cast.

1. The illusion breaks down a little bit for systenogrammerssay, if the varialde is actually a
contol regster on a dece. Then the actual pgram order must be pservedThis is usualf
accomplished by diggng the \arialle as special, for example using traatile type modifier in
C.
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1.4.3 Naming

The position adopted on naming in thegmmming model is presented to theogmammer
through the ppgramming languge or ppgramming emironment. It is va the layic of the po-
gram is based upon. Mever,the issue of naming is critical at eachedleof the commnication
architecture Cetainly one possible siteqy is to hae the opeaations in the popgramming model
be one-to-one with the commicaion astraction at the user/system boundary and iceHhis
be one-to-one with the tdware pimitives. Havever, it is also possible for the compiler and
libraries to povide a level of transldion between the pgramming model and the commica-
tion astraction,or for the opeating system to intaéene to handle some of the ogtens at the
user/system boundarThese alteratives allow the athitect to consider implementing the com-
mon, simple opegtions directly in hadware and supporting the more complex @tiens patly

or wholely in software.

Let us consider theamificaion of naming at the igers under the two pmary progrramming
models:shared adress and msga passing. st, in a shared attess model, accesses to €uar
variabes in the pogram are usually mapped by the compiler to load and store instructions on
shaied virtual addessesjust like access to any otheariable This is not the only option, the
compiler could gnerae special code sequences for accesses to shaiadles,the unibrm
access to jwate and shared ddesses is appealing in many respects. A machine suppgids a
bal physical address spadeany processor istde to generde a physical attess for any lodéon

in the machine and access the location in a single memorgtiopett is staightforwad to real-
ize a shared virtual ddess space on a machineyding a global physical abless space: esta
lish the vitual-to-plysical mapping so that shared virtuableebses map to the sameygpical
location,i.e., the processes tathe same entries in theirgeatebles. Havever,the existence of
the level of transladion allows for other pproaties. A machine suppoiitsddependent local physi-
cal address space#f each processor can only access a distinct set of locations. Even on such a
machinea shared virtual aftess space can beogided by mapping virtual ablesses Wich ae
local to a process to the cesponding physical ddess. The non-local adresses are left
unmappedso upon access to a non-local sharedtess$ a pge fault will occur allowing the
operding system to intaene and access the remote shared Wtde this gproad can povide
the same namingopeations, and odeling to the pogram,it clearly has diferent hadware
requiements at the hdware/softwag bounday. The achitects job is esole these design
trade-ofs across Igers of the system implementation so that the resulfiisiexfit and cost éfc-
tive for the target application workload on available technology.

Secondly,messge passing opetions could beealized diectly in hadware,but the m&ching
and hluffering aspects of the sendéeive opesations are better suited to sofive implementton.
More basic data anspot primitives are well supported in ltavare Thus,in essentially all par
allel madines,the messge passing mgramming model isealized via a softare layer that is
built upon a simpler commmicaion astraction. At the user/system boungasne gproad is to
hawe all messge opesations go through the opating system, as if they ewe 1/0 opeations.
However,the frequeng of messge opestions is nuch greaer than I/O opeations,so it males
sense to use the opng system support to set upsourcespriviledges etc. and allow thed¥
quent,simple data inskr opedtions to be supported dictly in hadware On the other hand
we might consider adopting a shared virtuadirads space as thewer level communication
abstractionjn which case send andgei\e opeations involve writing and reading sharedfters
and posting theppropride syntironizdion events.The issue of naming arises at eaclelef
abstaction in a parallel ahitecturenot just in the pggramming model. As &hitects,we need
to design gainst the fequeng and type of opetions that occur at the commicaion astrac-
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tion, understanding that there arade-ofs at this boundary wolving wha is supported dactly
in hardware and what in software.

Operations

Eadc programming model defines a specific set of apens that can be penfmed on the data or
objects that can be named within the model. For the case of a shdmesbadodel, these ilntle
reading and writing sharednmablesas well as arious atomic ead-modify-wite opertions on
shaed \ariableswhich are used to syhconiz the threads. For meggapassing the opations
are send andeceiwe on pivate (local) adresses and process idewtifi,as describedbmve One
can obsere that there is a global dikss space defined by a megspassing model. Each ele-
ment of data in the pgram is named by a process number and loadiead within the prcess.
However,there are no opatiions defined on these globaldressesThey can be passedamd
and intepreted by the mgram,for example,to enulate a shared alless style of prggramming
on top of mesgge passingbut they cannot be omted on diectly at the commanicaion astrac-
tion. As achitects we need to bevare of the opations defined at eachvel of estraction. In
particular,we need to beery clear on vha ordeling among opetions is assumed to begsent
at eacqg level of abstraction, where communication takes place, and how data is replicated.

Ordering

The popeties of the specified order among atiens also has a pfound efect throughout the
layers of parallel arhitecture Notice for example,that the mesgg passing model places no
assumption on the deiing of opesations by distinct ppcessesexcept the explicit pogram oder
associted with the sendéceive opeations, wheras a shared dobss model must specify
aspects of how processes see the order ofabges perbrmed by other processes.d@ring
issues are important andtrer subtle. Many of th&ricks” that we play for pedrmance in the
uniprocessor contextwlve relaxing the order assumed by theggammer to gain pesfmance,
either through parallelism or imgred locality or both. Exploiting parallelism and locality is
even more important in the utiprocessor caselhus, we will need to understandhat new
tricks can be pked We also need to examinenha of the old ticks are still alid. Can we per
form the traditional sequential optimiians, at the compiler and ehitectue level, on each -
cess of a parallel pgram?Where can the explicit syiconizaion opegtions be used to allo
ordeing to be elaxed on the corentional opeations?To ansver these questions we will need to
dewlop a nuch more complete understanding of howgrams use the comumicaion astrac-
tion, wha propeties they ely upon, and Wwa machine stictures we would like to exploitof
performance.

A natural position to adopt on deiing is that opeations in a thread are in@gram oder. That is
what the ppgrammer would assume for the special case of omadhHowvever,there emains
the question of Wa ordeling can be assumed among @biens perbrmed on sharedaviables
by different threadsThe threads opee indgpendenty and potentialy, at diferent speeds so
there is no clear notion dfatest”. If one has in mind that the machines lvehas a collection of
simple ppcesscs opeating on a common, ceralized memay, then it is easonale to epect
that the global order of memory accesses will be some arpiintedeaving of the indvidual
progmam oders. In reality we wn’t build the machines thisay, but it estalishes vha opea-
tions are implicitly odered by the basic opatiions in the modelThis inteteaving is also vhat
we expect if a collection of threads that are timesthgrerhaps at aewy fine level, on a unipo-
cessor.

9/10/97

DRAFT: Parallel Computer Architecture 67



Introduction

Where the implicit odeling is not enough, explicit syhmnizdion opesgtions are equired.
There are two types of synchronization required in parallel programs:

e Mutual exclusiorensures that certain opBons on certain data are parhed by ony
one thread or process at a tindée can imgine a room that must be entered to perf
sud an opeation, and only one process can be in the room at a fitis. is accom-
plished by locking the door upon entry and unlocking it on exit. uérsé processes
arrive at the door ether,only one will get in and the others will wait till it de@s.The
order in which the processes are alled to enter does not matter and magy ¥rom one
execution of the grgram to the next; Wwat matters is that they do so one at a time
Mutual exclusion operations tendderializethe execution of processes.

* Eventsare used to imirm other processes that some poinb@foaition has beerached
so that they can proceed knowing that certain dependeneeban disfied These
operdions are like passing a batton from one runner to the nextefaarace or the
stater firing a gun to indicate the start of @&e If one process writes a valuehieh
another is supposed tead,there needs to be amemt synbironizdion opestion to
indicate that the value i®ad/ to be ead Events may bpoint-to-point involving a pair
of processes, or they may dbal, involving all processes, orgroup of processes.

1.4.5 Communication and Replication

The final issues that aréosely tied to the Igers of parallel athitectue are that of commmica-
tion and dataeaplicaion. Replication and comruanicaion are inhegntly related Consider fist a
messag passing opeation. The efect of the sendéceive pair is to copy data that is in the
senders adiress space into &gon of the eceivers adlress spacelhis transer is essentialor

the receiwer to access the data. If the data was produced by the Senefects arue communi-
cation of informaion from one process to the other. If the data just happened to be stored at the
senderperhaps because that was the initial curtion of the data or because the data set is
simply to laige to fit on any one nodéhen this tanser meely replicaes the data to kere it is
used The processes are not actually canmioaing via the data amsfer If the data wasepli-
cded or positioned j@perly over the processes todie with, there would be no need to comm
nicae it in a messge More impotantly, if the receiver uses the dataver and wer ajain, it can
reuse its eplica without additional datagnsfes. The sender can modify thegon of adiresses
tha was peviousy comnmunicaed with no efflect on the pvious receiver If the efect of these
later updates are to be communicated, an additional transfer must occur.

Consider now a caentional data access on a uniprocessor throughhe dathe cache does not
contain the desired ddess,a miss occurs and thdobk is transfeed from the memory tha
senes as a backing s®rThe data is implicitly eplicaed into cache near the processott tha
accesses it. If the processor resuses the data while it resides inhtagdter tansfes with
the memory arevaided In the uniprocessor cadhe processor produces the data and the pr
cessor that consumes it, so themmunication”with the memory occurs only because the@ada
does not fit in the cache or it is being accessed for the first time.

Interpocess comummicdion and data &mser within the staage hiearchy become melded
together in a shared physical dadss space. Cache misses cause a datafr across the
madine interconnect teneer the physical backing stme for an adress is remote to the node
accessing the adesswhether the adtess is prate or shared and whether thanser is a esult
of true comnanicdion or just a data accesghe naural tendency of the machine is tpficate
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daa into the caches of theqmessos that access the data. If the data is reused while it is in the
cache,no data tnsfes occur; this is a major sdntage However,when a write to shared @a
occurs,something must be done to ensure that later reads by otlvespos get the new da,
rather than the old data that waplicaed into their cache3his will involve more than a simple
data transfer.

To be clear on theetaionship of commnicaion and eplicdion it is important to distinguish
seveal concepts that aregquenty bundled tgetherWhen a pogram perbrms a wite, it binds

a data value to an deess; a read obtains the data value bound to dressiThe data resides in
some physical stage element in the mame A data transferoccurs vineneer data in one ster
age element is emsfeed into anotheiThis does not necesfigrchang the bindings of attesses
and valuesThe same data may reside in multiple physicaltlons, as it does in the unipces-

sor stoage hiearchy,but the one nearest to the processor is the only one that the processor car
observe If it is updded, the other hiddeneplicas,including the actual memory loan, must
eventualy be updéed Copying data binds a new set ofleebses to the same set of values. Gen-
erally, this will cause dataansfes. Once the copy has been matie two sets of bindingsear
completey independentunlike the implicit eplicaion that occurs within the stage hiearchy,

so updates to one set ofdaelsses do not ffct the otherCommunicatiorbetween prcesses
occuss when data written by one process is read by andthisrmay cause a datairser within

the madine, either on the write or theead, or the data &nser may occur for othereasons.
Communicéion may irvolve estalishing a new bindingor not, depending on the paular
communication abstraction.

In general,replicaion avoids “unnecessary’tomnunication,that is tansfering data to a con-
sumer that was not produced since the data veasousy accessedlhe ability to perdrm repli-
céion automéically at a gven level of the commanicaion archtiectue dependsety strongly on
the naming and deiing propeties of the Iser. Moreover,replicaion is not a panacea. Rea-
tion itself requires data tnsfes. It is disagtantageous to eplicae data that is not going to be
used We will see thateplicaion plays an important role throughout parallel computehnitec-
ture.

Performance

In defining the set of opatfons for commanicaion and coopeition, the data types, and the
addessing modes, the commicaion astaction specifies how shared objects are namvbet
ordeiing propeties are peservedand how syrigronizdion is perbrmed However,the perbr-
mance baracteistics of the gailale piimitives determines how they are actually usedgfm-
mers and compiler wiers will avoid costly opegtions where possite. In evaluging architectural
trade-offs,the decision betweerdsilte altenatives ultimaely rests upon the penimance thg
deliver Thus,to complete our introduction to the fundamental issues of parallel compeher ar
tecture, we need to lay a framework for understanding performance at many levels of design.

Fundamentallythere are three peninance metcs, latency the time taken for an opaion,
bandwidth the ite at which opesgtions are pedrmed,andcost the impact these opations hae
on the @&ecution time of the mgram. In a simple wrld where pocessos do only one thing at a
time these metrics are dgtly relaed; the bandwidth (opations per second) is theaiprocal of
the laeng/ (seconds per opation) and the cost is simply thetd@g times the number of oper
tions perbrmed However,modern computer systems do manyedént opegtions at once and
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Example 1-2

the relaionship between these penfnance metrics is uth more complex. Consider thellbw-
ing basic example.

Suppose a component can perf a specific opetion in 100ns. Cledy it can
suppot a bandwidth of 10 million opations per second. hever, if the
component is pipelined inteally as ten equal sgas,it is ale to povide a peak
bandvidth of 100 million opestions per secondlhe rite at which opegtions can
be initiated is determined by how long thewgst stge is occupied10 ns, ather
than by the leeng of an individual opetion. The bandwidth delered on an
applicaion depends on howdguenty it initiates the opetions. If the gplication
stats an opeaation every 200 ns, the delered bandwidth is 5 million opations per
seconds,regadless of how the component is pipelined. Of seuusae of
resouces is usually baty, so pipelining can be adntagous g&en when the
avera@ initiation ete is low. If the gplication perbrmed one hundred million
operdions on this component, ha is the cost of these omtions? Taking the
operdion count times the opation lateng/ would gve upper bound of 10 seconds.
Taking the opettion count divided by the peakte gves a lever bound of 1
secondThe former is accuate if the ppgram waited for each opation to complete
before contiruing. The latter assumes that the aiens are completelywarlapped
with other useful wrk, so the cost is simply the cost to initiate the apen.
Suppose that onvarage the pogram can do 50 ns of usefulovk after eahb
operdion issued to the component bef it depends on the otions resultThen
the cost to themplication is 50 ns per opdiion — the 10 ns to issue the opkon
and the 40 ns spent waiting for it to complete.

Since the unique ppety of parallel computer ahitectue is comnunication,the opegtions tha
we are concerned with most often are datadfes. The perbrmance of these opations can be
understood as a generalization of our basic pipeline example.

Data Transfer Time

The time for a data transfer operation is generally described by a linear model:
TransferTimgn) = T+ % (EQ 1.3)

where n is the amount of data.¢e, number of tes), B is the tanskr rate of the component
moving the data (g., bytes per second), and the constamh}€r, , is the start-up costhis is a
very corvenient model, and it is used to describe\emde collection of opations,including
messagesnemory accesses, buarnsactionsand vector opetions. For mesgge passingthe
statt up cost can be thought of as the time for trs fiit to get to the destination. It applies in
mary aspects of traditional computerchitecture,as well. For memory opations, it is essen-
tially the access time. For busutisactionsit reflects the bus arbdtion and command phases.
For any sort of pipelined opation, including pipelined instruction processing or vector aper
tions, it is the time to fill pipeline.

Using this simple model, it is clear that the bandwidth of a datsr opeation depends on the
transkr siz. As the tanser size increases ipproates the asymptotiate of B, which is some-
times eferred to as, . How quidy it approades this ate depends on the start-up cost. It is eas-
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ily shown that the size athich half of the peak bandwidth is obtainéde half-pever point, is
given by

—— (EQ 1.4)

Unfortunatelythis linear model does noivg any indication when the next such @tien can be
initiated, nor does it indicate whether other usefurikvcan be pedrmed during the &msfer.
These other factors depend on how the transfer is performed.

Overhead and Occupancy

The data @nskr in which we are most interested is the one that occurs across theloetwar
allel machines. It is initiated by the processor through the eoriwaiion assistThe essential
components of this operation can be described by the following simple model.

CommunicationTimén) = Overheadt Network Delay+ Occupancy (EQ 1.5)

TheOverheads the time the processor spends initiating taedfer This may be a fed cost, if
the processor simply has to tell the conmicaion assist to staror it may be linear im, if the
processor has to copy the data into the asHis.ley point is that this is time the processor is
busy with the commnicaion event; it cannot do other usefubvk or initiate other comuomica-
tion during this timeThe remaining portions of the commicaion time is considered theet-
work latency it is the part that can be hidden by other processor operations.

The Occupancyis the time it takes for the data to pass through theestocomponent on the
communicgion path. For eample,each link that is &iveised in the netark will be occupied ér
time g, where B is the bandwidth of the linRhe data will occupy otheesourcesincluding
buffers,switches,and the commmicaion assist. Often the comumication assist is the bottlenkec
tha determines the occupgndhe occupancy limits howdguenty comnunicdion opeations
can be initited The next data smser will have to wait until the criticalegsouce is no longr
occupied bedre it can use that samesourcelf there is lffering between the processor and the
bottleneck,the processor may bdla to issue a drst of tansfes at a fequeng gredaer than
1

Occupancy’
occupancy. A new transfer can start only when a older one finishes.

however, once this bffering is full, the processor must slow to traterset by the

The remaining comomicaion time is lumped into thBletwork Delaywhich includes the time
for a bit to be routed across the actual gtvand many otherattors,such as the time toegy
through the commnicaion assist. Fom the pocessos viewpoint, the specific halware compo-
nents contbuting to netvark delay are indistinguislide. Wha effects the processor is how long
it must wait bedre it can use the result of a commicaion event, how rmuch of this time it can

be bust with other asfities, and how fequenty it can commnicae data. Of cowwe,the task of
designing the netark and its interfaces isswy concerned with the specific components and their
contribution to the aspects of performance that the processor observes.

In the simple case lere the processor issues a request and waits foespemsethe beakdown
of the comnanicdion time into its three components is interal. All that mdters is the total
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round trip time. Hwvever,in the case Wwere multiple opegtions are issued in a pipelineashion,
each of the components has a specific influence on the delivered performance.

Indeed,every individual component along the coranicaion path can be described by its gela

and its occupanc The netvork delay is simply the sum of the delays along the petk. net-

work occupancy is the maximum of the occupancies along the path. For interconnection net-
works there is an additional factor that arises because mamgfds can take place
simultaneouslylf two of these tansfes attempt to use the sanesouce at oncefor example is

they use the same wire at the same tioree must waitThis contentionfor resouces inceases

the arerage comnunicaion time. Fom the pocesscs viewpoint, contention ppeas as
increased occupaypcSome esouce in the system is occupied for a time determined by the col-
lection of transfers across it.

Equdion 1.5is a \ery geneal model. It can be used to describe daadfes in many places in
modern,highly pipelined computer syster#ss one gample,consider the time to mve a lbock
between cache and memory on a miEsere is a period of time that the cache controller spends
inspecting the tag to determine that it is not a hit and then startingatts®ty this is the wer-
head The occupancy is thddzk size divided by the bus banitith, unless there is some gler
component in the systemhe delay includes the normal time to adiérand gain access to the
bus plus the time spent dadiing data into the memyprAdditional time spent waiting toagn
access to the bus or wait for the memory barkecto complete is due to contention. A second
obvious example is the time to transfer a message from one processor to another.

Communication Cost

The bottom line is, of cose,the time a prgram spends pesfming comnunicaion. A useful
model connecting the pgram daracteistics to the hatware perbrmance is iyen by the éI-
lowing.

Communicatiol©ost = frequencyx (CommunicationTime- Overlap) (EQ 1.6)

Thefrequency of communicatiptiefined as the number of comnicaion opegtions per unit of
work in the ppgram,depends on many @gramming fctoss (as we will see in Chapter 2) and
mary hadware design dctos. In paticular, hadware may limit the tanser size and theby
detemine the minimum number of megea. It may autontically replicae data or mitgte it to
whete it is used. Heoever,there is a certain amount of commnicaion that is inherent to paltel
executionsince data must be shared anocpssos must coatinate their vork. In general for a
madine to support grams with a high commmicaion frequeng the other parts of the com-
municdion cost equation must be small — lowecdhead,low network delsgy, and small occu-
pancy The attention paid to comumicaion costs essentially determinesioh programming
models a machine cagaalize eficiently and vha portion of the pplicaion space it can supgor
Any parallel computer with good computational periance can supportggrams that commn
nicae infrequentlybut as the fqueng increases or volume of conumicaion increasesrgater
stress is placed on the communication architecture.

Theoverlapis the portion of the comumicaion opegtion which is perbrmed concuently with
other useful wrk, including computation or other conumication.This reduction of the &fctive
cost is possible becauseich of the commnicdion time irvolves work done by components of
the system other than theopessorsuch as the netwk interface unit, the s, the netvork or the
remote processor or menyoilOverlgoping comnunicaion with other vork is a orm of small
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scale paallelism, as is the instruction Vel parallelism exploited by fast maprocessar. In
effect, we may iwest some of thevailabe parallelism in a gogram to hide the actual cost of
communication.

Summary

The issues of namingpeetion set, and ateing gply at each leel of abtraction in a pallel
architecturenot just the psggramming model. In gneral,there may be a Vel of transldion or
run-time softvare between the pgramming model and the commicaion abstraction,and
beneth this dstraction are ky hadware astractions. At any leel, communicaion and eplica-
tion are deply related Wheneer two processes access the sante, daither needs to be com-
municded between the two oeplicaded so each can access a copy of the dda.ability to
hawe the same namefer to two distinct physical locations in a meaningful manner atemng
level of abstraction depends on the position adopted on naming aledray at that lgel. Wher-
ewer data meement is imolved, we need to understand its parhance baracteistics in tems
of the laeng/ and bandidth, and futhermoe how these are influenced byechead and occu-
pancy As achitects,we need to desigrgainst the fequeng and type of opetions that occurta
the comnunicaion abstraction,understanding that there arade-ofs across this boundar
involving wha is supported déactly in hadware and vha in softnare The position adopted on
naming,opegtion set, and ateling at each of thesevels has a qualittve impact on these
trade-offs, as we will see throughout the book.

Concluding Remarks

Parllel computer arhitectue forms an important thread in theodution of computer ahitec-
ture, rooted essentially in the gieanings of computing. For ath of this history it takes on a
novel,even exotic ole, as the gerue for adancement eer and bgond what the base tdmology
can povide Parallel computer designs @ demonstted a ich diversity of stucture,usualy
motivated by specific higher Vel parallel pogramming models. Heever,the dominant témo-
logical forces of the VLSI gnerdion have pushed parallelism ineasingy into the mainsram,
making parallel ahitectue almost ubiquitous. All modern maprocessar are highly pallel
internally, executing seeral bit-parallel instructions invery cycle and gen reordemng instuc-
tions within the limits of inherent dependences to raiéighe costs of comumicaion with had-
ware components xtemal to the processor itselflhese micoprocess@ hae become the
performance and jice-perfomance leaders of the computer indusirom the most peerful
supercomputerto dgartmental serers to the desktop, we seee@ higher pedrmance systems
constucted by utilizing multiple of such pcessas integgrated into a commnicaions fabric.
This tetinologcal focus, augmented with increasing todty of compiler tetinology, has
brought about a é@mdic cornvergence in the stictural organizaion of modern parallel maines.
The key architectual issue is how comumicdion is intggrated into the memory and 1/0O systems
tha form the remainder of the computational notdlbis comnunicaions achitectue reveals
itself functionally in terms of Wat can be named at the darare level, what ordeling guaantees
are povided and how syronizdion opegtions are pedrmed,while from a pemdrmance point
of view we must understand the inheremétey and bandwidth of thevailade comnunication
operdions.Thus,modern parallel computercnitectue caries with it a strong engeeing com-
ponent, amenable to quantitative analysis of cost and performance trade-offs.

Computer systems, whether parallel or sequential, are desigagtstathe equirments and
charactestics of intended wrkloads. For coventional computex, we assume that mostauti-
tioners in the field hee a good understanding ohe sequential grgrams look lile, how they
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are compiled and vha level of optimization is easonale to assume the ggrammer has per
formed Thus,we are condrtalde taking popular sequentialggrams,compiling them for a tar
get achitecture,and dewing conclusions from running theqggrams or galuaing execution
traces.When we attempt to impve perbrmance through ahitectual enhancements, ev
assume that the program is reasonably “good” in the first place.

The situation with parallel computers is quitdetiént. There is much less gneal undestanding
of the process of parallel ggramming and there is a wider scope fasggammer and compiler
optimizations,which can geatly affect the pogram daracteistics exhibited at the mhme
level. To adiress this situ#on, Chapter 2 mvides an wervien of parallel pograms wha they
look like, how they are consicted Chapter 3 explains the issues that must loeeaded by the
progmammer and compiler to construct‘@ood” parallel pogram,i.e., one that is déctive
enough is using multiple pcessas to orm a easonale basis for arhitectual evaludion. Ulti-
mately,we design parallel computergagnst the ppgram daracteistics at the machinevel, so
the goal of Chapter 3 is toaiv a connection betweenha gppeas in the pogram text and ho
the machine spends its time. Irieet, Chapter 2 and 3 take us from engal understanding of
issues at thepplication level down to a specific understanding of thamcter and queng of
operations at the communication abstraction.

Chepter 4 esthlishes a famewok for workload-driven evaludion of parallel computer designs.
Two related scenarios are diessedHrst, for a parallel machine that hasesd/ been built, we
need a sound method ofaduding its perbrmanceThis proceeds byrt testing vaat individual
aspects of the machine argaHe of in isolation and then measures how well theyquerfcol-
lectively. The understanding ofpglicaion characteistics is important to ensure that thenk
load run on the machine stresses thgous aspects of interest. Secome outline a process of
evaluding hypothetical arhitectual adrancements. New ideas fohigh no machine exists need
to be @aluaed through simlations,which imposes sere restictions on wha can easonalyl be
executedAgain, an understanding opalication characteistics and how they scale withgtriem
and machine size is crucial to navigating the design space.

Chaptes 5 and 6 study the design of symmetrigitiprocesscs with ashaed physical adiress
space in detailTher are seeral reasons to go dely into the small-scale case bef examining
scalalte designs. ifst, small-scale naltiprocessaos are the most pralent borm of parallel achi-
tectue; they are likly to be what the most students are exposed toavthe most softare devel-
opes are tageting and vina the most pofessional designers are dealing with. Sectimelissues
that arise in the small-scale are indiga of wha is critical in the lage scalebut the solutions
are often simpler and easier toagp.Thus,these baptes piovides a study in the small ofhat
the following four chaptes adiress in the laye Third, the small-scale oitiprocessor design is a
fundamental building lbck for the lager scale méaudnes.The aailade options for interfacing a
scalalle interconnect with a pressor-memgrnode are layely circumscibed by the pwcessor,
cache,and memory stricture of the small scale machindsnally, the solutios to key design
problems in the small-scale case are elegant in their own right.

The fundamentaluilding-blod for the designs in Chapter 5 and 6 is the shared bus between pr
cessos and memagr The basic psblem that we need to solve is teg the contents of the
cades coherent and the view of memorgvided to the ppcessos consistent. A bus is aer-

ful mechanism. It pvides ay-to-ary commnunicaion through a single set of weis, but moe-
over can sere as a broadcast medium, since there is only one set ed, atrd &en povide
global stéus, via wired-or signalsThe popeties of bus transactions are exploited in designing
extensions of coventional cache cordliers that solve the coherenceoplem. Chapter 5 -
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sents the fundamental techniques to bus-based cache coherencegitdhéelel and pesents
the basic design alteatives.These design alteatives povide an illustetion of how workload-

driven ezaluaion of can be brought to bear in making design decisianallf; we retum to the
pamllel programming issues of the earliehgaptes and examine how aspects of the hige
design influence the sofae level, especially in egad to cache éécts on sharing p@ms and
the design of abust synaironizdion routines. Chapter 6 focuses on thgamizadion stucture
and machine implementation of bus-based cache eonberlt examines a ariety of moe

adwanced designs that seek to reduten and increase bandwidth whileggeving a consis-
tent view of memory.

Chaptes 7 through 1@orm a dosely intedocking study of the design of schla parallel achi-
tectues. Chapter 7 makes the conceptual step from a bus transaction as a blokkinfgrb
higher level éstractions to anetwork transactiors a building lock. To cement this undstand-
ing, the comnanicaion astractions that we ha sureyed in this intoductoy chapter are con-
structed from pimitive network transactionsThen the hagpter studies the design of the node to
network interface in depth using a spectrum of case studies.

Chaptes 8 amd 9 go dedy into the design of scdie machines supporting shaed adiress
spacepoth ashaed fysical adiress space andshaed \irtual adiress space upon ingendent
physical adiress space3he central issue is automateapticaion of data while pgseving a con-
sistent view of memory andvaiding perbrmance bottleneck§he study of a global pisical
addess space emphasizesdveaiie oiganizdions that povide eficient, fine-gain shaing. The
study of a global virtual adress space pvides an understanding ot is the minimal dgree
of hardware support required for most workloads.

Chapter 10 takes up the question of the design of theldealatwork itself. As with ppcessors,
cachesand memory systems, there areesal dimensions to the netrk design space and often
a design decision wolves interactions alongeral dimensionsThe dapter lays out the funda-
mental design issues for sdalainteiconnectsillustrates the common desighaices,and &al-
uaes themelative to the equirements estdished in hiaptes 5 and 6. Chapter 9aivs tayether
the maerial from the other threehaptes in the context of anxamindion of techniquesdr
latengy tolerance,including bulk tansfer,write-behind,and read-ahead across the spectrum of
communicéion astractions. fhally, Chapter 11 looks athvet has been learned throughout the
text in light of tedinologocal,application,and economic trends tortast vha will be the ley
on-going developments in parallel computerchitecture The book presents the conceptumalri-
dations as well as the eimgeing issues across a broahee of potential scales of design, all of
which have an important role in computing today and in the future.
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Historical References

Paumllel computer athitectue has a longrich, and \aried history that is dg®y interwoven with adances in
the undelying processormemoy, and netwrk tedinologes. The first blossoming of parallel enitectures
occus around 1960This is a point were transistos have replaced tubes and other complicated and caimstr
ing logic technologes. Pocessas are smaller and more maeable A relatively cheap,inexpensive stoage
technoloy exists (core memg), and computer ahitectues are settling down into meaningftamilies.”
Small-scale shad-memoy multiprocessas took on an important commercial role at this point with thepince
tion of wha we call mainframes togaincluding the Buroughs B5000[LoKi61] and D825[And*62] and the
IBM System 360 model 65 and 67[Pad81]. Indeseghport for mltiprocessor confiurdions was one of the
key extensions in thevelution of the 360 anhitectue to System 370hese included atomic memory oaer
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tions and intgsrocessor inteupts. In the scientific computingear,shaed-memoy multiprocessas were also
common.The CDC 6600 mvided an asymmetric ste-memoy organizdion to connect multiple pgheral
processa with the central mcessorand a dual CPU cougfiiration of this machine was pduced The oigins
of messge-passing machines can be seen as Wém, introduced in 1960[Por60]. Data parallel hies
also emerged, with the design of the Solomon computer[Bal*62,Sl0*62].

Up through the late 60s there was tremendousvationm in the use of parallelism within the processootigh
pipelining and eplicaion of function units to obtain a fareger range of perbrmance within admily than
could be obtained by simply increasing thack rate It was argued that thesdats were reahing a point of
diminishing etums and a majoresearb project got underay involving the Unversity of Illinois and Bur

roughs to design and build a 64 processor SIMD himag called llliac 1V[Bou*67], based on the diar

Solomon vork (and in spite oAmdahl’'s arguments to the coaty]Amdh67]). This project was ety ambi-
tious, involving researh in the basic haware tednologiesarchitecture |/O devices,opegting systems, -

gramming languges,and gplicaions. By the time a scaledgta, 16 processor system wasmking in 1975,
the computer industry had undergone massive structural change.

First, the concept of stage as a simple linearray of modeately slow physical devices had beavolution-
ized,first with the idea of virtual memory and then with the concept dfiesgdNork on Multics and its pde-
cessorse.g.,Atlas and CTSSseparaed the concept of the userdaglss space from the physical memory of the
machine This required maintaining a short list of receranslationsa TLB, in order to obtaingasonale per
formance Maurice Wilkes, the designer of EDS2, saw this as a peerful technique for @anizing the
addressde stoage itself giving rise to vihat we now call the cdwe This pioved an interesting example of
locality triumphing @er parallelismThe introduction of caches into the 360/85 yielded higheiopeegnce
than the 360/91, khich had a fasterlack rate, faster memay, and eldorae pipelined instructionxecution
with dynamic sheduling The use of caches was comgialized in the IBM 360/185, but this raised aices
difficulty for the I/O conwllers as well as the additionalquessas. If adiresses wre cached and thefiore not
bound to a particular memory ld@mn, how was an access from another processor or controller to locate the
valid data? One solution was to maintain acloy of the location of each cache line. An idea that has
regained importance in recent years.

Secondstorage tedinology itself underwent aswolution with semiconductor memoriesptacing core memo-
ries. Initially, this tetinology was most pplicalde to small cache memories. Other mmaes,such as the CDC
7600,simply povided a sparate small, fast gplicitly addressed memgr Third, integrated circuits took hold
The combined result was that uniprocessor systemgesh damdic advance in pedrmancewhich miti-
gaed nuch of the added value of parallelism in the llliac IV system, with itsriof technologcal and achi-
tectual base. Pipelined vector processing in the CDC STAR-10fressed the class ofumerical
computaions that llliac was intended to sel\but eliminated the difcult data m@ement opetions. The fnal
strav was the introduction of the &1 system, with an astounding 80 MHeak rate owing to exquisite cir
cuit design and the use oha we now call a RISC instruction set, augmented with vectorabpes using
vector egistes and dfering high peak ate with very low start-up costThe use of simple vector geessing
coupled with fast, expensive ECL circuits was to dominate high performance computing for the next 15 years.

A fourth dramdic chang occured in the edy 70s, havever, with the introduction of miaprocessors.
Although the pedrmance of the er microprocessa was quite I, the impovements were diamadic as bit-
slice designs @e way to 4-bit, 8-bit, 16-bit and full-ard designsThe potential of this téwology motivated

a major esearh efort at Canege-Mellon University to design a lge shared memory ultiprocessor using
the LSI-11 \ersion of the popular PDP-11 minicompuf€his project went through two phasessg C.mmp
connected 16 pcessas through a specially design aiit-switched cross-bar to a collection of memories and
I/0O devices,much like the dancehall design iigure 1-19a[Wul*75]. Second CM* sought to build a huned
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processor system by connecting 14-nolisstess with local memory through a geat-switthed netwrk in a
NUMA configuration[Swa*77a,Swa77b], as in Figure 1-19b.

This trend tavard systems constructed from nyaamall micoprocessa literally exploded in the ebrto mid
80s.This resulted in the emgance of seeral dispaate factions. On the shared memory sitevas obsered
tha a confluence of caches andpeties of busses made modesiltiprocessas \ery atractive Busses hae
limited banavidth, but are a broadcast medium. Caches filter bandwidth andiera intemediay between
the processor and the memory system. Rekeatr Bekeley [Goo83,Hell*86] introduced extensions of the
basic bus protocol that alled the caches to maintain a consistertestais direction was pked up by se-
eral small companies, including Syse[Nes85]Sequent[Rod85], EncefBel85,Sha85]Flex[Mate85] and
others,as the 32-bit miaprocessor made its Het and the vast personal computer industry tobkfoflecade
later this gnenl gpproat dominates the sezr and high-end orkstaion maket and is taking hold in the PC
serves and the desktof.he gproad expelienced a tempary set back asery fast RISC micoprocessors
took avay the perbrmance edge of multiple si@r poocessos. Although the RISC microsese well suited to
multiprocessor design, their bandwidth demandesdy limited scaling until a neweanerdion of shared bis
designs emerged in the early 90s.

Simultaneouslythe messge passing direction took off with two majarsearh eforts. At Callech a poject
was started to construct a 64-processor system using i8086/80®pmoessa assembled in aypercube
configurdion[Sei85,AtSe88]. fom this base-line seral further designs ®ere pursued at Ca¢th and
JPL[Foc*88] and at least two companies pushed thpreat into commetialization, Intel with the iPSC
seiies[] and Ametek. A someha more ggressie gpproat was widely promoted by the INMOS poration

in England in thedrm of theTransputerwhich integrated four commnicaion channels déctly onto the
microprocessoiThis goproat was alsodllowed by nCUBE, with a series oéfy large scale mesga passing
madines. Intel caited the commodity processopf@oad forward,replacing the i80386 with the faster i860,
then eplacing the netark with a fast gid-based interconnect in the Delta[] and adding dedicated gessa
processors in the Paragon. Meiko moved away from the transputer to the i860 in their computing surface. 1Bl
also investigated an i860-based design in Vulcan.

Data parallel systems also took off in thelga#80s, after a period oklative quiet. This included Becher’s
MPP system desloped by Googkar for imge processing and the Connection Machine promoted by Hitlis f
Al Applications[Hill85]. The key enhancement was theopision of a gnerl purpose interconnect togir-
lems demanding other than simpledgbased commmicaion. These ideas saw commoilizaion with the
emergence ofThinking Machines Caoration,first with the CM-1 vhich was close to Hillis’ dginal conce-
tions and the CM-2 tich incoiporaed a lage number of bit-parallel deting-point units. In adition, MAS-
PAR and Wavetracer carried the bit-serial, or slightly wider organization forward in cost-effective systems.

A more brmal derelopment of highlyegular parallel systems enged in the edy 80s as systolic eays,gen-

erally under the assumption that agamumber of gry simple processing elements would fit on a sinbip.c
It was envisioned that these wouldyide cheap,high perbrmance special-purpose add-ons toveotional

computer systemgo some extent these ideasibdeen emplged in ppgramming data parallel maines.

The iIWARP project at CMU produced a moengral,smaller scale buildingldck which has been deloped
further in conjunction with IntelThese ideas la also found their &y into fast gaphics,compession,and

rendering chips.

The te@inologcal possibilities of the VLSlewlution also prompted thevastigdion of more radical &hitec-
tural concets, including da&aflov architectures[Den80,Arv*83,Gur*85which integrated the netwrk very
closey with the instruction scheduling mechanism of thecpssar It was argued thatew fast d/namic
scheduling throughout the machine would hide the long conication lateng/ and synbronizdion costs of a
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large machine and theby vastly simplify programming The e/olution of these ideas tended to eerge with
the evolution of message passing architectures, in the form of message driven computation [Dal93]

Large scale shad-memoy designs took off as well. IBM pursued a higlofge researb efort with the RP-
3[Pfi*85] which sought to connect a &g number of edy RISC pocessorsthe 801, through autterfly net-
work. This was based on the NYU UltracomputerkfGott*83], which was paticularly novel for its use of
combining opeations. BBN deeloped two lage scale designs, the BBN Butterfly using Motorola 680@0 pr
cessos and thé' C2000[Bi0*] using the 88100sThese €brts prompted aety broad ivestigdion of the pos-
sibility of providing cade-coheent shared memory in a sdallasetting.The Dash project at Stanfl sought
to provide a fully cache coherent diginted shared memory by maintaining aedtol containing the disposi-
tion of every cache ck[LLJ*92,Len*92]. SCI epresented an &frt to standatdize an interconnect and dee
coherenyg protocol[IEEE93].TheAlewife project at MIT sought to minimize the Hasare support for shad
memory[Aga*94], which was pushed further byesearcher ar Wisconsin[Wo*93]. The Kendall Squar
Researb KSR1[Fa93,Saa93] goewven further and allows the home location of data in memory toateig
Alternatively, the Denelcor HEP attempted to hide the cost of remote mentengidy inteteaving mary
independent threads on each processor.

The 90s hee exhibited the lnnings of a damdic corvergence among thesearous factionsThis comwver-
gence is dven by manydctos. One is learly that all of the pproad have clear common aspecihey all
require a fist, high quality interconnect hey all profit from avoiding laeng/ where possible and reducing the
absolute léengy when it does occuthey all benefit from hiding as ath of the commnicaion cost as possi-
ble, where it does occuiThey all must support atious forms of synbronizaion. We hare seen the sheal
memol work explicit seek to better ingeate messge passing i\lewife[Aga*94] and Flash [Flash-ISCA94],
to obtain better pesfmance vhere the egulaity of the gplicaion can povide lage transfes. We have seen
daa parallel designs incporae complete commodity pcessas in the CM-5[Lei*92], allowing ery simple
processing of mesgas at user iel, which provides much better diciency for Messge Driven computing and
shaed memory[VEi*92,Spe*93]Thefe remains the additional support for fast global kyowizaion. We
hawe seen fast global symmnization,messge queues, andtieng hiding techniques deloped in a NUMA
shaed memory context in the & T3D[Kesc93,K0e*94] and the mesga passing support in the Meiko CS-
2[Bar*94,HoMc93] povides direct virtual memory to virtual memorgiisfes within the user attess space
The new element that continues tpaete the factions is the use of complete commoditykstdion nodes,
as in the SP-1, SP-2 andnous workstdion dustes using meging high bandwidth netarks, such as
ATM.[And*94,Kun*91,Pfi95]. The costs of waler intgraion into the memory system, imperfect netk
reliability, and gneal purpose systenequirements hae tended to &g these systems mortosely aligned
with traditional message passing, although the future developments are far from clear.
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1.7 Exercises

1.1 Compute the annuatgnth rate in number of insistorsdie siz, and dock rate by fitting an
exponential to the technology leaders using available data inTable 1-1.

1.2 Compute the annual perfnance gowth rates for each of the behmaks shown infade 1-
1. Comment on the differences that you observe

Table 1-1 Performance of leading workstations

Year Machine | Specint | SpecFP| Linpack| n=1000| Peak FH
Sun 4/260 1987 9 6 11 11 3.3
MIPS M/120 1988 13 10.2 21 4.8 6.7
MIPS M/2000 1989 18 21 3.9 7.9 10

IBM RS6000/540 1990 24 44 19 50 60

HP 9000/750 1991 51 101 24 47 66
DEC Alpha AXP 1992 80 180 30 107 150
DEC 7000/610 1993 132.6 200.1 44 156 200
AlphaServer 2100| 1994 200 291 43 129 190

Generally,in evaluging perbrmance tade-ofs we will evaluge the impovement in peidr-
mance, or speedup, due to some enhancement. Formally,

Time,: Performance;
Speedup due to enhancementE Swithout £ _ fith £

Timein e Performancg;i,out £

In paticular, we will often efer to the speedup as a function of the machinallpgre.g., the
number of processors.

1.3 Suppose you aravgen a pogram which does a fied amount of wrk and some fractios  of
tha work must be done sequentiallThe remaining portion of themk is perectly pamllel-
izakde onP pocessos. AssumingT, is the time taken on onegassordeiive a brmula for
Tpthe time taken o pressacs. Use this to get afmula gving an upper bound on the
potential speedup o g@messcs. (This is a anant of wha is often calledAmdahl’'s
Law[Amd67].) Explain why it is an upper bound?

1.4 Giwen a histgram of aailalde parallelism such as that showrFigure 1-7, where f; is the
fraction of gcles on an ideal machine irhweh i instructions issyeleiive a gneralizéion of
Amdabhl’s law to estimate the potential speedup &n a -issue superscatémaensgply your
formula the histogram data in Figure 1-7 to produce the speedup curve shown in that figure.

1.5 Locde the curent TPC pedrmance data on thedy and compare the mix of system cgnfi
urations,performance,and speedups obtained on those machines with the data presented in
Figure 1-4.

Programming Models

1.6 In messge passing models each process @wipled with a specialarialde or function tha
gives its unique number or rank among the set of processesiting a pogram. Most
shared-memagr programming systems pvide a £tch&inc opeation, which reads thealue
of a location andtamically increments the locatiolVrite a little pseudo-code to showwo
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to use étch&adl to assign each process a uniqusber Can you determine the number of
processes comprising a shared memory parallel program in a similar way?

1.7 To move ann-byte mesgg alongH links in an unloaded steand-forwad network takes
time H\—;‘-V+ (H-1)R, wher W is the aw link bandwvidth, andR is the routing delay per hop.
In a netvork with cut-through routing this takes tin‘%+ (H-1)R . Consider an &x8 g
consisting of 40 MB/s links anduters with 250ns of dela What is the mininum, maxi-
mum, and &erag time to moe a 64 byte mesga through the netark? A 246 byte mes-
sage?

1.8 Consider a simple 2D finite d&rence scheme lere at each steprery point in the maix
updaed by a weighted varage of its four neighba,
Ali, j1 = Al 1 =w(Ali =1, jT+ A[i+ 1, j] + AL, j-1] + A[i, j +1])

All the values are 64-bit floating point numbers. Assuming one element per processor and

1024x1024 elements, how much data must be communicated per step? Explain how this computation
could be mapped onto 64 processors so as to minimize the data traffic. Compute how much data must be
communicated per step.

Latency and bandwidth

1.9 Consider the simple pipelined component described in Exalrpl&uppose that theopli-
cdion altenaes baveen lursts ofm independent oaions on the component and phases of
computaion lastingT ns that do not use the componenveld® an gpression desdsing
the eecution time of the mgram based on these paretes. Compare this with the unpipe-
lined and fully pipelined bounds. Athat points to you get the maximum dispancy
between the models? How large is it as a fraction of overal execution time?

1.10 Show that Equation 1.4 follows from Equation 1.3.
1.11 What is the x-intercept of the line in Equation 1.3?

If we consider loading a cache line from memory thager time is the time to actuallyainsmit
the data across the bukhe start-up includes the time to obtain access to ilkecbrvey the
addressaccess the memgrand possily to place the data in the cachedryefresponding to the
processarHowever,in a modern processor with dynamic instructiohestuling,the overhead
may include only the portion spent accessing the cache to detect the miss and plaeqgdbe r
on the busThe memory access portion cabirtes to l&ency,which can potentially be hidderyb
the overlap with execution of instructions that do not depend on the result of the load.

1.12 Suppose we @ a machine with a 64-bit wide bus running at 40 MHz. It takes 2yolesc
to arbitiete for the bus and present theleebs.The cache line size is 32 bytes and the mem-
ory access time is 100né/ha is the laencg for a read miss®ha bandwidth is obtained on
this transfer?

1.13 Suppose this 32-byte line isatrsfered to another processor and the camitaion archi-
tectue imposes a start-up cost gi2and data anser bandwidth of 20MB/sWha is the
total latency of the remote operation?

If we consider sending ambyte megedo another mrcessorywe may use the same modghe
stat-up can be thought of as the time foregodength mesgge; it includes the softare oserhead

86

DRAFT: Parallel Computer Architecture 9/10/97



Exercises

on the two pocessorsthe cost of accessing the netwinterface,and the time to actually ass
the netvork. The transkr time is usually determined by the point along the path with the least
bandwidth, i.e., the bottleneck.

1.14 Suppose we & a machine with a meggastart-up of 10@s and a asymptotic peak band-
width of 80MB/s. At what size message is half of the peak bandwidth obtained?

1.15 Derie a g¢neal formula for the“half-power point” in terms of the start-up cost and peak
bandwidth.

The model makes certain basiade-ofs dear. For xample,longer tansfes take more timebut
obtain higher bandwidth because the start-up cost istaemiover more data m@ment.This
observ#éion can help guide desigratte-offs,at least up to a pointhere the collection of da
transfers interact to increase the start-up cost or reduce the effective bandwidth.

In some cases we will use the modeEiguaion 1.6 for estimating data anser perbrmance
based on design mametersas in the exampledbave In other cases, we will use it as an etnpir
cal tool and fit measurements to a line to determine thetigé start-up and peak bandwidth of a
portion of a system. Obseg, for example,that if data undeoes a series of copies as part of a
transfer

1.16 Assuming that befre transmitting a mesga the data must be copied intoudfer. The basic
messag time is as ifexercise1l.14,but the copy is pesfmed at a cost of 5ycles per 32-bit
words on a 100 MHz médine Given an equation for the expected Hgegel messge time
How does the cost of a copy compare with a fixed cost of, say, entering the operating system

1.17 Consider a machine running at 100 MIPS on somkiaad with the dllowing mix: 50%
ALU, 20% loads, 10% stes, 10% bandes. Suppose the instruction misgeris 1%, the
data miss ate is 5%, the cache line size is 32 bytes. For the purpose of this taltutad a
store miss asaquiling two cache line émsferspne to load the mdy update line and one to
replace the dirty line. If the machineguides a 250 MB/s Us, how many pocessacs can it
accommodte at 50% of peak bus bandwidiWhat is the bandwidth demand of eacloges-
sor?

The scenario iExercisel.17is a little rosy because it looks only at the sum of tleeage band-
widths, which is why we left 50% headroom on the bus. bctf wha happens as theub
approabes sturation is that it takes longer to obtain access for thg 4o it looks to the rces-
sor as if the memory system iswkr. The efect is to slow down all of the pcessas in the sys-
tem, thereby reducing their bandwidth demand. Let’s try a agalss calculation from the other
direction.

1.18 Assume the instruction mix and misgeras irExercisel.17,but ignore the MIPSsince tha
depends on the pasfmance of the memory system. Assume instead that the processor run as
100 MHz and has an ideal CPI (with an perfect memory systm)unloaded cache miss
penalty is 20 gcles.You can ignore the vite-bad for stores. (As a star, you might want to
compute the MIPSate for this new maune) Assume that the memory system,,itbe hus
and the memory controller is utilized throughout the nWész is the utilization of the mem-
ory system,U, , with a single processor?dm this esult,estimate the number ofquessors
tha could be supported ket the processor demand would exceed tladade bus band-
width.
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1.19 Of cousse,no matter how many pcessas you place on theus, they will never exceed the
availabe bandwidth. Explains k& happens to processor pmrhance in response ta$
contention. Can you formalize your observations?
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cuarter 2 Parallel Programs

Morgan Kaufmann is pleased to present marial from a preliminary draft of Parallel Computer Architectur e; the
material is (c) Copyright 1996 Morgan Kaufmann Publishers. This material may not be used or distibuted for any
commercial purpose without the express written consent of Morgan Kaufmann Publishers. Please note that this

material is a draft of forthcoming publication, and as such neither Mogan Kaufmann nor the authors can be held
liable for changes or alterations in the final edition.

2.1 Introduction

To understand andraluae design decisions in a parallel rame, we must hee an idea of the
softwae that runs on the mhaime Understanding jpgram behavior led to some of the most
important adances in unigrcessorsincluding memory hierciies and instruction set design. It
is all the more important in mftiprocessorshoth because of the increase iges of feedom
and because of theuth greder perbrmance penalties caused by to mitthas betweenppli-
cations and systems.

Undestanding parallel softare is important for algrithm designes, for programmersand br
architects. As algrithm designes, it helps us focus on designing afighms that can beun
effectively in parallel on real systems. Asogrammersijt helps us understand theykperfor-
mance issues and obtain the bestgrarénce from a system. And aslaitects,it helps us under
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2.2

stand the wrkloads we are designinganst and their important deees of freedom. &allel
softwae and its implications will be the focus of the next thiegptes of this bookThis chap-
ter describes the process oé&ing parallel pograms in the major pgramming modelsThe
next chapter focuses on the perfnance issues that must belsgssed in this jpcessexploring
some of the & interactions between parallgh@icaions and ashitectues. And the dllowing
chepter relies on this understanding of saftevand interactions to delop guidelines for using
parllel workloads to galuae achitectual tradeofs. In addition to arhitects,the maeral in
these baptes is useful for users of parallel machines a#:vthe frst two dhaptes for pogram-
meirs and algrithm designes, and the third for users making decisions abdutunachines to
procure However,the major focus is on issues thathitects should understand bed they gt
into the nuts and bolts of machine design awtiitectual tradeoffs,so let us look at it from this
perspective.

As architects of sequential mhimes,we generaly take pograms for ganted:The field is meaure
and there is a lge base of pprgrams than can be (or must be)wésl as fied We optimize the
madine design gainst the equilements of these pgrams. Although weetogniz that po-
grammes may further optimize their code as caches becorgerlar foaing-point support is
improved,we usually galuge new designs without anticipating such safswhangs. Compil-
ers may golve along with the @hitecture but the source pgram is still teaed as fked In par
allel architecture there is a mch stionger and more dynamic interaction between thagion
of machine designs and that of parallel safevSince parallel computing is all about meff
mance,programming tends to be orientedmards taking adantag of wha machines pvide.
Paallelism ofers a new dgree of freedom—the number ofgqmesss—and higher costof
daa access and catination, giving the pogrammer a wide scope for sofive optimizdions.
Even as athitects,we theefore need to open up thegicaion “black box”. Understanding the
important aspects of the process ofaing parallel softare,the focus of this ltapter,helps us
apprecige the role and limitations of thechitecture The deeper look at perinance issues in
the next chapter will shed greater light on hardware-software tradeoffs.

Even after a pphlem and a good sequential afighm for it are detenined,there is a substantial
process imolved in ariving at a parallel prgram and thex@cution haracteistics that it ofers to
a multiprocessor athitecture This chapter presentseneal principles of the paitlelizaion pro-
cessand illustetes them with real exampleghe dapter bgins by introducing four actual b-
lems that sete as case studies throughout the next twaptes. Then,it describes the four major
steps in ceding a parallel ppgram—using the case studies to illase—folloned by &amples
of how a simple parallel pgram might be written in each of the majoogmamming modelsAs
discussed irChepter1, the dominant models from aqgramming pespective narow down to
three:the data parallel model, a sharedirads spaceand messge passing between ipate
addess spaced.his thapter illustiates the pmitives povided by these models and howthe
might be usedbut is not concerneduwh with perbrmanceAfter the perbrmance issues in the
parallelizaion process are understood in the néxdpter,the four pplicaion case studies will
be treated in more detail to create high-performance versions of them.

Parallel Application Case Studies

We saw in the mvious dapter that nultiprocessos are used for a wideamge of gplications—
from multiprogramming and commercial computing to so-caltgdand dallenge” scientifc
prodems—and that the most demanding of thggdieations for high-end systems tend to be
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from scientific and engeeing computing. Of the four case studies wér to throughout this
chapter and the ne, two are from scientific computingne is from commercial computing and

one from computerrgphics. Besides being from tifent gplicaion domains, the case studies

are chosen to represent a range of important behaviors found in other parallel programs as well.

Of the two scientific pplications,one sinulates the motion of ocean ¢ants by discretizing the
prodem on a set ofegular gids and solving a system of equations on ttiésgThis tednique
of discretizing equations orrigs is very common in scientific computingnd leads to a set of
very common commnicaion patems.The second case studspresents another majoorn of
scientifc computing in which rather than discretizing the domain on r@dghe computtonal
domain is epresented as a lgg number of bodies that interact with one another andemo
around as a result of these interactioisese so-called N-body g@iems are common in mgn
areas such as sinfeting galaxies in astphysics (our specific case s§)dsimulating proteins
and other molecules imemisty and biolgy, and sinulating electomagnetic interactions. As in
mary other aeas,hierarchical algrithms for solving these pblems hae become ety popular
Hierardhical N-body algrithms,such as the one in our case giudve also been used to selv
important poblems in computer rgphics and some pacularly difficult types of equation sys-
tems. Unlike the fst case stug this one leads toriegular,long-range and unpedictalle com-
munication.

The third case study is from computeahics,a \ery important consumer of modee-scale
multiprocessa. It traveses a three-dimensional scene and highisgidar and unpedictable
ways,and endes it into a two-dimensional inge for displg. The last case studgpresents the
increasingy important class of commerciapglications that angize the huge volumes of a
being produced by our iafmaion society to disoeer useful knwledge,caegoies and tends.
These inbrmaion processingplicaions tend to be 1/O inteng, so parallelizing the 1/O aeti
ity effectively is very important. The first three case studies are part of a herak suite
[SWG92] that is widely used in @ritectual evaludions in the liteature,so there is a wealth of
detailed inbrmaion availabe about themThey will be used to illustite architectual tradeoffs
in this book as well.

Simulating Ocean Currents

To model the imate of the edh, it is important to understand how thenasphee interacts with
the oceans that occupy threeifths of the edh’s surfice This case study siafates the motion
of water curents in the oceaMhese cuents deelop and golve under the influence of\sal
physical forces,including amospheic effects,wind, and friction with the oceandbr. Near the
ocean walls there is additiorf@ertical” friction as vell, which leads to the delopment of edy
currents.The goal of this particulapplicaion case study is to sunete these ety curents wer
time, and understand their interactions with the mean ocean flow.

Good models for ocean behavior are compdidaPredicting the state of the ocean at any instant
requires the solution of complex systems of dgures, which can only be pesfmed rumerically

by computerWe ae, hovever,interested in the behavior of the mnts wer time.The actual
physical poblem is continuous in both space (the ocean basin) andhimé enble computer
simuldion wediscretiz it along both dimension$o discetize spacewe model the ocean basin
as a gd of equally spaced points. &y important ariable—sub as pessureyelocity, and \ar-
ious curents—has a value at eachdgpoint in this discetizaion. This particular pplication
uses not a three-dimensionaidgbut a set of tw-dimensionalhotizontal cross-sections twugh
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the ocean basin, eackpresented by a two-dimensionaldyof points (seéigure 2-1). For sim-
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(a) Cross-sections (b) Spatial discretization of a cross-section

Figure 2-1Horizontal cross-sections through an ocean basin, and their spatial discretization into regular grids.

plicity, the ocean is modeled as a rectangular basin andithpaints are assumed to be equall
spaced Each \arialde is theefore represented by a pardae two-dimensional aay for ead
cross-section through the ocean. For the time dimension, wetiisdime into a series offite
time-stg@s.The equations of motion are solved at all thd goints in one time-sfe the state of
the variables is updated as &sult,and the equations of motion are solvedia for the ngt
time-step, and so on repeatedly.

Evely time-step itself consists ofvazal computational phases. Many of these are used to set up
values for the dferent \arialdes at all the gd points using the results from thesygibus time-

step. Then there are phases iigh the system of equations\@ming the ocean auldion ae
actually solved All the phases, including the selyinvolve sveeping through all points of the
relevant arays and manipulating their valuéghe solver phases are somet more complg, as

we shall see when we discuss this case study in more detail in the next chapter.

The more gd points we use in each dimension épresent our fied-siz2 ocean, the finer the
spdial resolution of our disatizaion and the more acate our sinulation. For an ocean shc
as theAtlantic, with its mughly 2000km-x-2000km span, using aidy of 100-x-100 points
implies a distance of 20km between points in each dimenElos.is not a g1y fine resolution,
so we would like to use many moredgpoints. Similaly, shorter physical intgals betveen
time-stgs lead to geaer sinulation accuacy For example,to simulate five yeas of ocean
movement updating the state every eight hours we would need about 5500 time-steps.

The computational demands for high aeayrare lage, and the need for uftiprocessing is
clear Fortunately,the goplicaion also ngurally affords a lot of concuency: many of the set-up
phases in a time-step are independent of one another aatbibean be done in paltel, and
the processing of diérent gid points in each phase ofigjcomputation can itself be done in par
allel. For &kample,we might assign diérent parts of each ocean cross-section temifit pio-
cessorsand hae the pocessas perbrm their parts of each phase of computation {a-garallel
formulation).
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2.2.2 Simulating the Evolution of Galaxies

Our second case study is also from scientific computing. It seeks to understavalutieneof

stas in a system of galaxieser time. For gample,we may want to study & happens wen

galaxies collide or how a random collection of stars folds into a defined galactjwesiihis

prodem involves sinulating the motion of a number of bodies (here stars) moving uondegs
exeted on each by all the otleann-bodyproblem. The computation is disetized in space
treding each star as apsardae bod, or by sampling to use one body &present many star
Here ajain, we discetize the computation in time and gsifete the motion of the galaxiesrf
mary time-steps. In each time-ptave compute thergvitaional forces &erted on each staryb
all the others and update the position, velocity and other attributes of that star.

Computing thedrces among stars is the mogpensie part of a time-step. A simple method to

compute érces is to calculate pairwise interactions among all stmis. hasO(n?) computa-
tional complexity fom stas, and is thezfore piohibitive for the millions of stars that weowld
like to sinulate However,by taking agtantag of insights into thedkrce lavs, smartethierarchi-
cal algorithms are ble to reduce the complexity ©(n log n) This makes itdasilbe to sirulate
prodems with millions of stars ineasonale time but only by using peerful multiprocessors.
The basic insight that the hagthical algorithms use is that since the strength of ttevigational
m;m,
r—z
wealer and thexfore do not need to be computed as aatayr as those of stars that are cloge b
Thus,if a group of stars is far enouglvay from a gven starthen their diect on the star does not
hawe to be computed inddually; as far as that star is conced,they can begproximded as a
single star at their center of mass withoutcmloss in accwacy (Figure 2-2). The further avay

interaction falls off with distance a& , the influences of stars that are furthema are

o

Star too close to 00o

approximate 0,0 o o| Larger group far
00000 enoughawtayto

- O o O| approximate
T O oo
o--e:7 "
o
Star on which forces 00 Small group far enough away to

are being computed approximate by center of mass

Figure 2-2The insight used by hierarchical methods for n-body problems.

A group of bodies that is far enougiay from a

en body may bepgroximaed by the center of mass of thegp. The futhel

apart the bodies, the larger the group that may be thus approximated.

the stars from aigen starthe lager the goup that can be thugproximated|n fact,the stength
of many physical interactions falls off with distane® hiearchical methods are becoming
increasingly popular in many areas of computing.

The particular hiearchical force-calcultion algorithm used in our case study is tBarnes-Hut
algoiithm. The case study is called Barnes-Hut in thediigne,and we shall use this nhame for it
as well.We shall see how the adgthm works in SectiorB.6.2 Since galaxies are denser in some
regons and sparser in ottsethe distibution of stars in space is hightyegular The distibution
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also hangs with time as the galaxyaves.The nadure of the hiearcty implies that stars in
denser egons interact with more other stars and centers of mass—and hemcembee vork
associged with them—than stars in sparsegons. There is ample concoeng/ across star
within a time-ste, but gven the iregular anddynamicaly changng naure the talleng is to
exploit it efficiently on a parallel architecture.

Visualizing Complex Scenes using Ray Tracing

Our third case study is the visualization of complex scenes in compapdias. A common
technigue used to render such scenes int@érasray tracing The scene isepresented as a set
of objects in three-dimensional spaemd the imge being endeed is epresented as a tw
dimensional ary of pixels (picture elements) whose colopacity and brightness values are to
be computedThe pixels taken gether epresent the imge, and the resolution of the ima is
detemined by the distance between pixels in each dimensi@scene issndeed as seendm

a specific viewpoint or position of thgee Rays are shot from that viewpoint througlerg pixel

in the imaye plane and into the scerfehe algrithm traces the paths of thesg/s—computing
their reflection, refraction,and lighting interactions as theyikt and eflect off objects—and
thus computes values for the color and brightness of tmespamding pixelsThere is olvious
parllelism across theays shot through diérent pixels.This gplicaion will be refered to as
Raytrace.

Mining Data for Associations

Information processing isapidly becoming a major mietplace for parallel systems. Businesses
are acquiring a lot of data about customers arudiyets,and deoting a lot of comput#onal
power to automtically extracting useful inbrmaion or“knowledge”from these data. Examples
from a customer dabase might include determining the buyingt@as of demgraphic goups

or segmenting customers according étetionships in their buying peems. This process is
called data mining. It diérs from standard dabase queries in that its goal is to identify implicit
trends and ggmentationsrather than simply look up the data requested by ectliexplicit
query For xample,finding all customers who tia bought cat food in the last week is natada
mining; havever, segmenting customers according &daionships in their ge goup, their
monthly income, and their preferences in pet food, cars and kitchen utensils is.

A patticular, quite directed type of data mining is mining for associations lttex goal is to dis-
cower relaionships (associations) among theoimfidtion relaed to diferent customers and their
transactionsand to gnerae rules for the irdrence of customer bebiar. For example,the daa-
base may store fowery transaction the list of items pmased in that transactiofhe goal of
the mining may be to determine associations between sets of commotiipgad items tha
tend to be puwhased tgether; for @ample,the conditional pbebility P(S;|S,) that a certain set
of items § is found in a transactiorivggn that a dferent set of items Ss found in that &nsac-
tion, where $and $ are sets of items that occur often in transactions.

Consider the mblem a little more conetely. We are gven a déabase in viich the ecods cor
respond to customer pirase tansactionsas describedbmve Each transaction has arisac-
tion identifier and a set ottabutes or items, for example the itemsghasedThe frst goal in
mining for associations is to examine théadase and determinehich sets ok items, sy, are
found to occur tgether in more than awen threshold fraction of the transactions. A set of items
(of any size) that occur gether in a transaction is called is@msetand an itemset that isdnd
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in more than that threshold pentag of transactions is calledlarge itemsetOnce the lage
itemsets of sizé are bund—together with their frequencies of occence in the dabase of
transactions—deterining the association rules among them is quite &dsypoblem we con-
sider therefore focuses on discovering the large itemsets d&f aimbtheir frequencies.

The data in the dabase may be in main menypor more commonly on disk. A simpleaywto

solve the poblem is to fist determine the lge itemsets of size onerdi thesea set of candi-

date itemsets of size two items can be constructed—using the basic insight that if an itemset it
large then all its subsets must also bgdarand their fequeng of occurence in the insaction
datdase countedhis results in a list of lge itemsets of size tw@he process isepeded until

we obtain the lage itemsets of sizk There is concureng in examining lage itemsets of sizie-

1 to determine candidate itemsets of dizand in counting the number of transactions in the
database that contain each of the candidate itemsets.

The Parallelization Process

The four case studies—Ocean, Bes-Hut,Raytrace and Data Mining—#&dér dundant concur
rency,and will help illustete the process of eding efective parallel ppgrams in this bapter
and the next. For corgtenessywe will assume that the sequentialaithm that we are to mak
pamllel is gven to us, perhaps as a description or as a sequemighpr. In many cases, as in
these case studies, the best sequentialitigy for a ppblem lends itself easily to palieliza-
tion; in othes, it may not afford enough parallelism and a fundamentallyedént algrithm may
be required The iich field of parallel algrithm design is outside the scope of this bookwHo
ever,there is in all cases a significant process editrg a good parallel pgram that implements
the chosen (sequential) alithm, and we must understand this process in orderdgrgm par
allel machines effectively and evaluate architectures against parallel programs.

At a high level, the job of paallelizaion involves identifying the wrk that can be done in ¥

lel, determining how to distrute the vork and perhaps the data among the processing nodes, and
managng the necessary data access, como#ion and synbronizaion. Note that werk
includes computi#on, data access, and input/output tfi The goal is to obtain high pert
mance while kging piogramming efort and theresouce equiements of the mgram low. In
particular,we would like to obtain good speedugeothe best sequentialqgram that solves the
same poblem. This requires that we ensure a balanced thstion of work among pocessors,
reduce the amount of inf@pcessor comomicaion which is xpensive,and lee the werheads

of communication, synchronization and parallelism management low.

The steps in the process oéding a parallel ppgram may be pegirmed either by the pgram-
mer or by one of the manwars of system softare that intevene between the ggrammer and
the achitecture These lgers include thecompiler,runtime system, andperding system. In a
perfect world, system softare would allow users to write pgrams in the érm they find most
conwenient (for @ample,as sequential pgrams in a high-kel languge or as anwen higher
level speciftaion of the poblem),and would autontacally perform the tansformaion into efi-
cient parallel ppgrams and xecutionsWhile much researh is being conducted iparallelizing
compiler tebinology and inprogamming languges that make this easier for compiler amait+
ime systems, the goals arery ambitious and ha not yet been &ieved In practice todg the
vast majority of the process is still tresponsibility of the mrgrammerwith perhaps some help
from the compiler and runtime system.gBelless of how the responsibility is divided among

9/10/97

DRAFT: Parallel Computer Architecture 95



Parallel Programs

23.1

these parallelizinggents,the issues anttadeofs are similar and it is important that we under
stand them. For conetenessye shall assume for the most part that tligmmer has to mak
all the decisions.

Let us now examine the padielizaion process in a more situred way, by looking at the actual
steps in it. Each step will affess a subset of the issues needed to obtain goaatmarice.
These issues will be discussed in detail in the next chapter, and only mentioned briefly here.

Steps in the Process

To understand the steps ireding a parallel ppgram,let us fist define threeefv important con-
cepts:tasks, processes andpessas. Ataskis an arbitarily defined piece of the ek done ly
the pogram. It is the smallest unit of conceng that the parallel mgram can exploit; i.e an
individual task is gecuted by only one pcessorand concueng is exploited across tasks. In
the Oceanaplicaion we can think of a singleig point in each phase of computation as being a
task,or a ow of grid points, or any arbitnry subset of agd. We could ®&en consider an enér
grid computation to be a single task, ihieh case parallelism is exploited only across pede
dent gid computations. In Barnes-Hut a task may be &gbarin Raytrace a ay or a goup of
rays,and in Data Mining it may beheding a single transaction for the ocrence of an itemset.
Wha exactly constitutes a task is notgscibed by the undéying sequential mgram; it is a
choice of the parallelizinggent,though it usually mahes some rtaral granulaity of work in
the sequential pgram stucture If the amount of wrk a task pedrms is small, it is called a
fine-grainedtask; otherwise, it is callezbarse-grained

A process(referred to intechangealyl hereafter as thread is an &stmact entity that pedrms
tasks! A parallel ppgram is composed of multiple cooping processeseach of vhich per
forms a subset of the tasks in thegram. Tasks are assigned to processes by sasaignment
mechanismFor example,if the computation for eaclow in a gid in Ocean is vieed as a task,
then a simple assignment mechanism may béve an equal number of adjaceotvs to eah
processthus dividing the ocean cross section into as manigdrtal slices as there areopr
cesses. In data mininthe assignment may be determined o portions of the dabase a&
assigned to each guess,and by how the itemsets within a candidate list are assigne-to pr
cesses to look up the tdhase Processes may need to coamicae and synisronize with one
another to pedrm their assigned tasksinglly, the way processes parfm their assigned tasks is
by executing them on the physigaibcessorsn the machine.

It is important to understand theféiience between processes anacpssos from a paalleliza-
tion pespective While processas are physicalasourcesprocesses pvide a comenient vay of
abstacting orvirtualizing a nrultiprocessorWe initially write parallel ppgrams in terms of o
cesses not physicalqaressos; mgpping processes to@essas is a subsequent stéfhe rum-
ber of processes does nmveto be the same as the number dfgessas availabe to the
program. If there are more pcessesthey are raltiplexed onto theilabe processas; if thee
are fewer processes, then some processors will remain idle.

1. InChaterl we used the coect opeating systems definition of a gressan adiress space and one or
more threads of control that share thatli@ds spacelhus,processes and threads are distinguished tn tha
definition. To simplify our discussion of parallelggramming in this hapterwe do not make this distinc-
tion but assume that a process has only one thread of control.
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Figure 2-3Step in parallelization, and the relationships among tasks, processes and processors.

The decomposition and assignment phases gethter called pditioning. The ochestréion phase codlinates data access, com-
munication and synchronization among processes, and the mapping phase maps them to physical processors.

Given these congés, the job of cedaing a parallel ppgram from a sequential one consists of
four steps, illustrated in Figure 2-3:

1. Decompositionof the computation into tasks,
2. Assignmentof tasks to processes,

3. Orchestration of the necessary data access, comiggion and synbronizdion among po-
cesses, and

4. Mapping or binding of processes to processors.

Togetherdecomposition and assignment are calletitfmring, since they divide the evk done
by the ppgram among the coopating processes. Let us examine the steps and theiidnodl
goals a little further.

Decomposition

Decomposition means breaking up the computation into a collection of tasksaFRgle,trac-

ing a single ay in Raytrace may be a task, or parhing a particular computation on an widr

ual gid point in Ocean. In gneral,tasks may becomevailable dynamicaly as the ppgram
executesand the number of taskgadlabe at a time mayaty over the &ecution of the gsgram.

The maximum number of taskgadlabe at a time pvides an upper bound on the number of
processes (and henceopessos) that can be usedfettively at that time. Hencehe major gal

in decomposition is texpose enougtoncurrencyto ke the processes busy at all times, yet not
so nuch that the gerhead of mamging the tasks becomes substantial compared to the useful
work done.
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Example 2-1

Answer

Limited concureng is the most fundamental limitation on the speediyezabe through paal-
lelism, not just the fundamental conceng in the unddying problem but also how mnch of this
concurrenyg is exposed in the decompositidine impact of @ailable concureng is codified in
one of the éw “laws” of parallel computingcalled Amdahls Law If some portions of a pr
grams eecution don’t hee as nuch concureng/ as the number of pcessos usedthen some
processa will have to be idle for those portions and speedup will be subopfimalee this in
its simplest érm, consider wha happens if dractions of a pograms eecution time on a uni-
processor is inhently sequential; that is, it cannot be @igelized Even if the rest of the pr
gram is paallelized to run on a lge number of pycessas in infinitesimal timethis sequential
time will remain.The orerall execution time of the parallel pgram will be at leas$, normalized
to a total sequential time of 1, and gpeedup limited to 1/s. Foxample,if s=0.2 (20% of the
programs execution is sequential), the maximum speedwgilade is 1/0.2 or 5egadless of the
number of processors used, even if we ignore all other sources of overhead.

Consider a simple exampleggram with two phases. In thadt phasea single
operdion is perbrmed ind@endent on all points of a two-dimensionatby-n
grid, as in Ocean. In the secqrtde sum of the? grid point values is computed. If
we hare p processorsye can assignzlp points to each processor and complete the
first phase in parallel in tim@/p. In the second phaseach processor can add leac
of its assignetmzlp values into a global sunaxiable Wha is the poblem with this
assignment, and how can we expose more concurrency?

The poblem is that the accuatetions into the global sum must be done one at a

time, or serialized to avoid corupting the sum value by having twoopesscs ty

to modify it sinultaneous} (see mutual xlusion in Sectior?.4.5. Thus, the

second phase isfettively serial and takes® time regadless ofp. The total time in

parllel is n2/p +n?, compared to a sequential time of 250 the speedup is at most
2n” or 2B , Which is at best 2ven if a \ery large number of prcessos is

2 p+1l
—+n

used.

We can expose more conpemg/ by using a little tick. Instead of summing elac
value diectly into the global sum, serializing all the summinge divide the
second phase into two phases. In the new second, phasiEess sums its assigned
values indpendent into a pivate sum.Then,in the third phaseprocesses sum
their plivate sums into the global surihe second phase is now fully parallel; the
third phase is sa&lized as bajre, but there are onlp opestions in it, notn. The

2
total parallel time i®%/p + n?/p + p, and the speedup is at bpst gn n i§

2n +p2
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large relative top, this speedup limit is almost linear in the number afcpssors
used Figure 2-4 illustrates the impovement and the impact of limited concency.

(a) One processor
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Figure 2-4lllustration of the impact of limited concurrency.

The x-axis is timeand the y-axis is the amount obik availabe (exposed by the decomposition) to be done in parallel &ea
time. (a) shows the pfile for a single prcessar(b) shows the daginal case in thexample,which is divided into two phases: one fu
concurrentand one fully séalized (c) shows the imjpived \ersion,which is divided into three phases: thestiitwo fully concurent,
and the last fully serialized but with a lot less work irOfg) rather tharO(n)).

More generally,given a decomposition and aoplem siz, we can construct @oncurency po-

file which depicts how many opations (or tasks) arevailabe to be perdrmed concuently in

the gplication at a gven time.The concureng profile is a function of the pblem,the decom-
position and the phlem size but is independent of the number otpssorseffectively assum-
ing that an infinite number of pcessas is aailable It is also independent of the assignment or
orchestrdon. These concueng profiles may be easy to ayak (as we shall see for mnia fac-
torization in Exercise2.4) or they may be quiteriggular For ekample,Figure 2-5 shows a con-
curreng profile of a parallel eent-driven simulation for the synthesis of digital ¢ic systems.
The X-axis is timemeasured inlock cycles of the circuit being sintated TheY-axis or amount

of concureng is the number of lgic gates in the circuit that areads to be @aluaed at a iyen
time, which is a function of the aiuit, the values of its inputs, and tinehere is a wide ange of
unpredictable concurrency across clock cycles, and some cycles with almost no concurrency.

The area under the e in the concueng profile is the total amount of evk doneg i.e. the
number of opeations or tasks computedr the“time” taken on a single pcessarlt’s hotizontal
extent is a laver bound on th&ime” that it would take to run the best parallegram gven tha
decompositionassuming an initely large number of pycessos. The area divided by the hor
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Figure 2-5Concurrency profile for a distributed-time, discrete-event logic simulator.

The circuit being simlated is a simple MIPS R6000 miprocessorThe y-axis shows the number ofio elements waailable for
evaluation in a given clock cycle.

zontal extent thesfore gves us a limit on the aevabe speedup with unlimited number ofopr
cessorswhich is thus simply thev@rag concureng/ availabde in the gplication over time.A
rewording of Amdahl’s law may therefore be:

AreaUnderConcurencyProfile
HorizontalExtentofConcurrencyProfile

Speedug

Thus,if f, be the number of X-axis points in the comenry profile that hae concureng k,
then we can write Amdahl’s Law as:

Speedup p< (EQ 2.1)

It is easy to see that if the totabuk z f .k is nomalized to 1 and a fractiogiof this is saal,
k=1

then the speedup with an infinite number afg@sscs is limited by % , and that with p @-
1

S+1_S

cessos is limited by

. Indct,Amdahl’s law can be applied to anyaeyhead of pal-

lelism, not just limited concuency,that is not alleiated by using more prcesscs. For nav, it
quantifes the importance of exposing enough comewy as a fist step in aaing a paallel
program.
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Assignment

Assignmentmeans specifying the mechanism biieh tasks will be distbuted among -
cesses. Fonample,which process isasponsite for computing érces on wvhich stars in Bares-

Hut, and which process will count occrances of wich itemsets and in ich parts of the da-

base in Data MiningPhe pimary performance goals of assignment ard#dance the workload
among pocessesto reduceinterprocess communicatipand toreduce the runtimevetheads of
managing the assignmer®alancing the wrkload is often eferred to adoad balancing The
workload to be balanced includes compiata, input/output and data access or camioation,

and programs that are not balance these well among processes are said to be load imbalanced.

Achieving these pedrmance goals sioitaneousf can appear intimideng. However,most po-
grams lend themselves toairfy structued gproad to partitioning (decomposition and assign-
ment). For mample, programs are often sictured in phases,and candidate tasksorf
decomposition within a phase are often easily identified as seen in the case Bhadigstopri-
ate assignment of tasks is often distble either by inspection of the code or from a higlegel
undestanding of the @plication. And whetre this is not so, @ll-knovn heuristic techniques er
often goplicable If the assignment is completely determined at tlginbéng of the pogram—or
just after reading and analyzing the input—and doeshwoig theeafter,it is called astatic or
predetermined assignmeiftthe assignment of @k to processes is determined at runtime as the
progam &ecutes—perhas to react to load imbalances—it is calledyaamic assignmenive
shall see examples of both. Note that this use of static is a lifdeedif than thécompile-time”
meaning typically used in computer science. Compile-time assignment that dobammst &
runtime would indeed be static, but the term is more general here.

Decomposition and assignment are the malgoiithmic steps in pallelizaion. They areusu-

ally independent of the undging architectue and pogramming model, although sometimes the
cost and complexity of using certainimitives on a system can impact decomposition and
assignment decisions. Aschitects,we assume that theqgrams that will run on our mames

are reasonaly patitioned Thete is nothing we can do if a computation is not parallel enough or
not balanced acrossqmessesand little we may belde to do if it verwhelms the machine with
communicgion. As pogrammersye usually focus on decomposition and assignmestfifide-
pendent of the mgramming model or @&hitecture though in some cases theopeties of the
latter may cause us to revisit our partitioning strategy.

Orchestration

This is the step here the achitectue and pogramming model play a lge le, as well as the
progmamming languge itself. To execute their assigned tasks, processes need mechanisms to
name and accesstdato exchang data (commnicae) with other pocessesand to synkronize

with one another. @hestréion uses thewailade mechanisms to accomplish these goals cor
rectly and eficiently. The choices made in drestréion are nuch more dependent on theopr
gramming model, and on thefiefencies with vhich the pmitives of the ppgramming model

and commanicaion abstraction are suppted, than the choices made in thepous steps. Some
questions in athestréon include how to @aniz data stictures andschedule tasks toxploit
locality, whether to commmicae implicitly or explicitly and in small or lage messges,and hav

exactly to olganiz and &press intgprocess commmicaion and synbronizaion. Orchestration

also includes scheduling the tasks assigned to a process adlypp@. deciding the order in
which they are executed. The programming language is important both because this is the step
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which the pogram is actually written and because some of twmtradeofs in orchestration
are influenced strongly by available language mechanisms and their costs.

The major pedrmance goals in chestréion arereducing the cost of the communication and
synchronizatioras seen by the gressorspresewing locality of dataeferencescheduling tasks
so that those onlwich many other tasks depend are completely,esaxdreducing theoverheads

of parallelism managementhe job of achitects is to povide the @propride primitives with
efficiencies that simplify successfulcbiestréion. We shall discuss the major aspects ahes-
tration further when we see how programs are actually written.

Mapping

The coopeating processes that result from the decomposition, assignment cimestation
steps constitute a full-ldged parallel ppgram on modern systeniBhe pogram may control the
mapping of processes togumessorshut if not the opetting system will take care of it, pviding

a parallel gecution. Mapping tends to beifly specific to the system orggramming ewiron-
ment. In the simplest cashe pocessas in the machine are partitioned inteefil subsets, possi-
bly the entire mauine,and only a single pgram runs at a time in a subsEhis is calledspace-
sharing The pogram can bind opin processes to pcessas to ensure that they do not mate
during the &ecution,or can gen control gactly which processor a process runs on so asee pr
sene locality of commnicaion in thenetwok topology Strict space-sharing lsemestogether
with some simple mechanisms tame-shaing a subset among multiplpglications have so ar
been typical of large-scale multiprocessors.

At the other gtreme,the opeating system may yYhamically control which process runs kere
and when—without allowing the user any contreéiothe mapping—to &eve better esource
shaing and utilization. Each processor may use the usu#iprogrammedscheduling citeria
to mange processes from the same or fronfetéfnt pograms,and processes may be vad
around among focessas as the scheduler dictatéhe opeating system may extend the uropr
cessor schedulingiteria to include mltiprocessor-speciiissues. Indct,most modern systems
fall somevhere between thebmve two extremesThe user may ask the system teqare cetain
propertiesgiving the user jogram some controlver the maping, but the opeaating system is
allowed to change the mapping dynamically for effective resource management.

Mapping and associate@souce mangement issues in wftiprogrammed systems are a&i
areas of esearh. Howvever,our goal here is to understand parall@iggamming in its basiodrm,

so for simplicity we assume that a single parallelgmm has complete controlver the
resouces of the matne We also assume that the number of processes equals the numioer of pr
cessorsand neither lsanges during thexaecution of the ppgram. By deéult, the opeating sys-

tem will place one process owmesy processor in no particularder. Processes are assumed not
to migrate from one processor to another durixgaution. For thiseasonwe use the tens
“process” and “processor” interchangeably in the rest of the chapter.

2.3.2 Parallelizing Computation versus Data

The view of the pallelization process describedae has been centered on compiata or
work, rather than on data. It is the computation that is decomposed and assignedekttue to
the comnunicaion &staction or perdrmance considetions, we may be @sponsile for
decomposing and assigning data to processes as walttJmfmany important classes ofotr
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2.3.3

lems the decomposition ofosk and data are so etigly related that they are ditult or even
unnecessgrto distinguish. Ocean is a goodaeple: Each cross-sectionakid through the
ocean iseprsented as anray, and we can view the paltelizetion as decomposing the data in
ead aray and assigning parts of it to procesSé®e process that is assigned a portion of eayar
will then be esponsike for the computation associated with thattioor, a so-calledwner com-
putesarangement. A similar situation exists in data minimgher we can view the dabase as
being decomposed and assigned; of seprere there is also the question of assigning the item-
sets to processes. \&el languge systems, including the HigrePormance Brtran standat
[KLS+94, HPF93], allow the mprgrammer to specify the decomposition and assignmenttaf da
structues; the assignment of computation theltofvs the assignment of data in an owner com-
putes manner. Heever,the distinction between computation and data éngar in many other
applicationsjncluding the Barnes-Hut and jReace case studies as we shall see. Sinceotine
putation-centricview is more gneralwe shall retain this view and consider data ngangent to

be part of the orchestration step.

Goals of the Parallelization Process

As stated peviously,the major goal of using a parallel machine is to ouerperbrmance
obtaining speedupver the best uniprocessaxeeution. Each of the steps ireding a paallel
program has a role to play inlkieving that awerall goal,and each has its own penfhance gals.

Table 2-1 Steps in the Parallelization Process and Their Goals

Architecture-
Step dependent? Major Performance Goals
Decomposition Mostly no Expose enough concurrency, but not too much
] Balance workload
Assignment Mostly no o
Reduce communication volume
Reduce non-inherent communication via data locality
(see next chapter)
Orchestration Yes Reduce cost of comm/synch as seen by processor
Reduce serialization of shared resources
Schedule tasks to satisfy dependences early
. Put related processes on the same processor if necgssary
Mapping Yes . o
Exploit locality in network topology

These are summarized in Table 2-1, and we shall discuss them in more detail in the next chapte

Creding an efective parallel ppgram equires &aluaing cost as well as penfimance In adli-
tion to the dollar cost of the machine itselfe must consider theesouce requiements of the
program on the arhitectue and theeffort it takes to deelop a stsfactorly program.While costs
and their impact are often morefutifilt to quantify than peofmancethey are ery important
and we must not lose sight of them; &t we may need to compromise perhance to educe
them. As algrithm designes, we should &vor high-perbrmance solutions thaekp the esource
requitments of the afgithm small and that don’tequire inodinae piogramming efort. As
architectswe should try to design high-perance systems than addition to being M-cost,
reduce pogramming efort and fcilitate resource-efiient algrithms. For @ample,an achitec-
ture that delrers gradually improving perbrmance with increased ggramming efort may be
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2.4

preferatte to one that is gabe of ultimaely delivering better pexdrmance but only with inati-
nate programming effort.

Having understood the basic process andatlglet us @ply it to a simple but detaileckample
and see Wwa the resulting parallel pgrams look like in the three major moderrogramming
models introduced i€hegpterl: shared adress spacemessge passingand data parallelVe
shall focus here on illustiing programs and pygramming pimitives, not so nuch on perbr-
mance.

Parallelization of an Example Program

24.1

The four case studies introduced at thgifo@ng of the digpter all lead to parallel pgrams tha
are too complex and too long to geras useful sampleggrams. Insteadhis section presents a
simplified \ersion of a piece dkernelof Ocean: its equation s@w It uses the equation solver to
dig deeper and illustte how to implement a parallelqggram using the three pgramming mod-
els. Except for the data paralletrgion,which necessdly uses a high-lel data parallel lan-
guage the parallel ppgrams are not written in an aesthetically pleasing lagejtiaat relies on
softwae layers to hide the ahestréion and commnicdion astraction from the gsgrammer.
Rather,they are written in C ord3cal-lile pseudocode augmented with simple extensions f
parallelism,thus exposing the basic coramcaion and synbronizaion primitives that a shad
addess space or meggapassing comanicaion adstraction must prvide Standard sequential
languags augmented with jonitives for parallelism alsceflect the state of most real pHel
programming today.

A Simple Example: The Equation Solver Kernel

The equation solverdmel solves a simple partial tfential equation on arigl, using vha is
referred to as a finite diérencing method. It opetes on aegular,tiwo-dimensional dd or aray

of (n+2)-by-(n+2) elements,such as a single hmontal cross-section of the ocean basin in
Ocean.The border aws and columns of therig contain boundary values that do nbange,
while the interiom-by-n points are updated by the solver starting from their initial vallies.
computaion proceedswer a number ofwe@s. In eachwseep,it opesmtes on all the elements of
the gid, for each elemengplacing its value with a weightederag of itself and its founearest
neighbor elements fave,belaw, left and ight, seeFigure 2-6). The updates are done in-place in
the gid, so a point sees the new values of the poimdsesaand to the left of it, and the oldlues

of the points below it and to its riglithis form of update is called the Gauss-Seidel method
During each weep the lemel also computes theerage difference of an updated elemerrfr

its previous \alue If this average difference @er all elements is smaller than &gefned“toler-
ance” pamameter,the solution is said to ke convergd and the solver exits at the end of the
swe@. Otherwise it performs anotherwee and tests for carergence gain. The sequential
pseudocode is shown Figure 2-7. Let us now go through the steps toeahthis simple equa-
tion solver to a parallel pgram for each mrgramming modelThe decomposition and assign-
ment are essentially the same for all three models, so these steps are examined tleaerah a g
context. Once we enter the drestrdon phasethe discussion will be ganizd eplicitly by
programming model.
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Figure 2-6Nearest-neighbor update of a grid point in the simple equation solver.

The Hack point is A[i,j] in the two-dimensional eay that epresents therid, and is updated using itself and the four shaded pi
that are its nearest neighbors according to the equation at the right of the figure.

2.4.2 Decomposition

For programs that are sictured in succesge loops or loop nests, a simpleyato identify con-
curreny is to start from the loop sicture itself.We examine the individual loops or loop nests in
the pogram one at a timesee if their itegtions can be peofmed in paallel, and detemnine
whether this exposes enough comency We can then look for cona@ngy across loops or tak

a different pproad if necessar Let us bllow this pogram stuctue based gproad in
Figure 2-7.

Ead iteration of the outermost loop, fiening at line 15, wees through the entirerig. These
iteraions dearly are not indpendentsince data that are modified in onedtien are accessed in
the next. Consider the loop nest in lines 17-24, and ignore the lines conthfhingLook at the
inner loop fist (thej loop starting on line 18). Each itédon of this loop reads therig point
(A[i,j-1]) that was written in the mwious itegtion. The itegtions are thesfore sequentiayl
dependentand we call this aequentialoop. The outer loop of this nest is also sequential, since
the elements inow i-1 were written in the pvious (-11) iteration of this loop. So this simple
analysis of existing loops and their dependences uncovers no concurrency in this case.

In general,an altenative to elying on pogram stucture to find concueng is to go back to the
fundamentatiependences in the undiging algorithms usedregadless of pogram or loop stic-

ture In the equation soér,we might look at the fundamental data dependences atahelarity

of individual gid points. Since the computation proceeds from left to right and top to bottom in
the gid, computing a particularrgl point in the sequential pgram uses the updated values of
the gid points diectly above and to the leffThis dependence fiam is shown irFigure 2-8. The
result is that the elements alongigeg anti-digonal (south-west to north-eastieano deen-
dences among them and can be computed &llpkamhile the points in the next anti-gjanal
depend on some points in thespious one. Fom this digram,we can obsee that of theo(n?)
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1. intn [* size of matrix: n-by-n elements*/
float *A, diff=0;

3. main()

4. begin

5. read(n); /* read input parameter: matrix size*/
6. A < nal | oc (a2-d array of size n+2 by n+2 doubles);

7. initialize(A); /* initialize the matrix A somehow */
8. Solve (A); /* call the routine to solve equation*/
9. end main

10. procedur e Solve (A) /* solve the equation system */

11. float *A; /* A'is an n+2 by n+2 array*/

12. begin

13. intij,done=0;
14. fl oat diff=0, temp;

15.  whi | e ('done) do [* outermost loop over sweeps */

16. diff = 0; [* initialize maximum difference to 0 */

17. fori <1 ton do [* sweep over non-border points of grid */
18. forj <1 ton do

19. temp = Alij]; /* save old value of element */

20. Alij] « 0.2* (Ali,j] + Alij-1] + AJi-1,j] +

21. Al j+1] + A[i+1,]]); [*compute average */
22. diff += abs(Ali,j] - temp);

23. end for

24, end for

25. i f (difff(n*n) < TOL) t hen done = 1;

26. end while
27. end procedure

Figure 2-7Pseudocode describing the sequential equation solver kernel.

The main body of wrk to be done in each i@ion is in the nested for loop in lines 17 to Z8is is wha we would like to pallel-

1ze.

work involved in eachweep,there a sequential dependencaeppitional ton along the digonal
and inherent concurrency proportionahto

Suppose we decide to decompose tbhekvinto individual gid points, so updating a singleid)
point is a taskThere are seeral ways to exploit the concueng this exposes. Let us examine a
few. Frst, we can lege the loop strcture of the pogram as it is, and insert point-to-point syn-
chronizdion to ensure that arig point has been produced in theremt sveep bebre it is used
by the points to the right of or below ithus, different loop nests andven diferent sveeps
might be in pogress simltaneous} on different elements, as long as the elemevlideen-
dences are not vidied But the @erhead of this syiconizdion at gid-point level may be too
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Figure 2-8Dependences and concurrency in the Gauss-Seidel equation solver computation.

The hoizontal and ertical lines with arows indicate ((jfendenceswhlle the anti-digonal, dashed lines connect points with

dependences among them and that can be compute

in parallel

high. Secongdwe can bang the loop sticture,and hae the fist for loop (line 17) bewer anti-
diagonals and the inner for loop beer elements within an anti-adjanal. The inner loop can
now be eecuted completely in paltel, with global synbronizaion between itetions of the
outer for loop to prsene dependences congatively across anti-digonals. Comruanicaion will
be ochestréed \ery differently in the two cases, gagularly if communication is explicit. Hov-
ever, this gproat also has mblems. Global syrtwronizaion is still very frequent:once per
anti-diagonal.Also, the number of itetions in the parallel (inner) looghanges with succesa
outer loop iteations,causing load imbalances amon@qassacs especially in the shorter anti-
diagonals. Because of theefjueng of syndironization,the load imbalances, and theogram-
ming complexity, neither of these approaches is used much on modern architectures.

The third and most commompproat is based on exploiting kmtedge of the poblem beg/ond

the sequential pgram itself. The order in wich the gid points are updated in the sequential
program (left to right and top to bottom) is not fundamental to the Gauss-Seidel solution method;
it is simply one possible deiing that is comenient to pogram sequential Since the Gauss-
Seidel method is not an exact solution method (unlike Gaussian eliminatiomjHautiteates

until corvergencewe can update therid points in a difierent order as long as we use ujeda
values for gid points fequenty enought One such ateiing that is used often for paralletn

sions is calleded-blackordering The idea here is to parae the gid points into altemaing red

points and tack points as on aheckerboat (Figure 2-9), so that no red point is adjacent to a
blad point or vice ersa Since each point reads only its four nearest neighibds clear that to

1. Even if we don’t use updated values from theenirwhile loop itegtion for any gid points, and &
always use the values as thegm at the end of the @rious while loop iteation, the system will still con-
verge, only much slower. This is called Jacobi rather than Gauss-Seidel iteration.
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Figure 2-9Red-black ordering for the equation solver.

The sveep over the gid is broken ug into two subveeepsThe frst computes all the red points, and the second allléiok points.
Since red points depend only on black points and vice versa, there are no dependences within a sub-sweep.

compute a red point we do not need the updated value of any other red point, but onlytdte upda
values of the laove and left kack points (in a standardveep),and vice ersa.We can thesfore
divide a gid swee into two phases:rBt computing all red points and then computing &tk
points.Within each phase there are no dependences anmmhgaints, so we can compute all

2
r'EZred points in pallel, then synbroniz globall, and then compute a% ldzk points in par

allel. Global synbronizdion is conserative and can besplaced by point-to-point syhconiza-
tion at the lgel of gid points—since not alllack points need to wait for all red points to be
computed—but it is convenient.

The ed-bla& ordeiing is different from our ciginal sequential atering,and can thefore both
converg in fewer or more weeps as well as produce féifent final values for thergl points
(though still within the corergence tolerance). Note that thiadk points will see the updtied
values of all their (red) neighbors in the reunt sveep,not just the ones to the left andoze.
Whether the new order is sequentially better orse than the old depends on thehtgm. The
red-bla& order also has the e@htag that the values produced and\e@gence popeties ae
independent of the number ofqgmessas usedsince there are no dependences within a phase. If
the sequential pgram itself uses ad-blak ordeiing then parallelism does ndtang the pop-
erties at all.

The solver used in Ocean in fact usesdblad ordering,as we shall seetkr. However,red-
blad ordeling produces a longereknel of code than isppropridge for illustration hee. Let us
therefoe examine a simpler but still common agyonous method that does nopaege points
into red and kack. Global synbronizaion is used betweerrig sweegs as bove,and the loop
structue for a svee is not bianged from the top-to-bottom, left-to-rightder Insteadwithin a
sweg a process simply updates the values of all its assigiegajnts, accessing its nest
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neighbos whether or not they fia been updated in the ceint sveep by their assigned pcesses
or not.Tha is, it ignores dependences amonig goints within a weep. When only a single pr
cess is usedhis defaults to the @inal sequential arering When multiple processes are used
the odering is unpedictalbe; it depends on the assignment of points texessesthe number of
processes use@nd how quikly different processesxecute at untime The eecution is no
longer deterministicand the number ofaees required to comerge may depend on theimber
of processos used; haever, for most easonale assignments the number afesps will not
vary much.

If we choose a decomposition into individual inner loopettens (gid points), we canxpress
the pogram by writing lines 15 to 26 dfigure 2-7 as shown irFigure 2-10. All that we hae

15.  whi |l e (Idone) do [* a sequential loop*/
16. diff = 0;

17. for alli <1 ton do [* a parallel loop nest */
18. for_ allj <1 ton do

19. temp = Alij];

20. Alij] « 0.2* (Alij] + Ali,j-1] + A[i-1,j] +

21. Al j+1] + Ali+1,]]);

22. diff += abs(Ali,j] - temp);

23. end for_all

24, end for_all

25. i f (difff(n*n) < TOL) t hen done = 1;

26. end while

Figure 2-10Parallel equation solver kernel with decompaosition into elements and no explicit assignment.

Since both for loops are made parallel by using for_all insteant,dhé decomposition is into individuatig elements. Other tha
this change, the code is the same as the sequential code.

done is eplace the kyword for in the parallel loops witfor_all . Afor_all  loop simpy

tells the unddying software/hardwag system that all itetions of the loop can bexecuted in
parllel without dgpendencedhut says nothing about assignment. A loop nest with both nesting
levels beingfor_all means that all itations in the loop nesthn or n2 here) can bexecuted

in parallel. The system can ohestrée the parallelism in anyay it chooses; the pgram does

not take a position on this. All it assumes is that there is an implicit globdireyrieaion after a
for_all  loop nest.

In fact, we can decompose the computation into not just individuatidtes as bove but ag
aggregéed goups of iteations we desi Notice that decomposing the computatiorresponds
very closely to decomposing therigl itself. Suppose now that we wanted to decomposeamts r
of elements insteadso that the wrk for an entire ow is an indvisible task vihich must be
assigned to the same procedée could @&press this by making the inner loop on line 18 a
sequential loop,langng itsfor_all back to dor , but leaving the loopwer rows on line 17
as a pallel for_all loop. The paallelism, or degee of concuency exploited under this
decomposition is reduced fromA inherent in the blem ton: Instead of? independent tasks of
duraion one unit edt, we now hae n independent tasks of diion n units each. If each task
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executed on a diérent pocessorwe would hae gproximatey 2n communicaion opeations
(accesses to data computed by other tasks) ffoints.

Let us proceed past decomposition and see how we might aesigrior processesxplicitly,
using a row-based decomposition.

Assignment

The simplest option isstaic (predetemined) assignment inlich each processor issponsible
for a contiguoudlock of rows, as shown irFigure 2-11 Row i is assigned to proceféj.

Alternative static assignments to this so-callddck assignment are also podsibsuch as a
cyclic assignment in hich rows are intdeawed among processes (procéss is assigweslir,
i +P, and so on)We might also considerdynamic assignment, lvere each procesgpeatedly
grebs the nextailabe (not yet computedpw after it finishes with aow task, so it is not gde-
termined which process computeshich rows. For nav, we will work with the static lmck
assignmentThis simple partitioning of the pblem exhibits good load balance acrosscesses
as long as the number afws is dvisible by the number of pcessessince the wrk per ow is
uniform. Obseve that the static assignments/édurther reduced the parallelism omgde=e of
concurrencyfrom n top, and the lnck assignment has reduced the caminaion required by
assigning adjacenbws to the same pcessarThe comnunicaion to computationatio is nov

only OEEH

PO

P1

P2

P4

@ © C|lee® |0 @ |0 O O
Qe olee® /0 ®@ 0|0 O O
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Figure 2-11A simple assignment for the parallel equation solver.

Ead of the four pocessas is assigned a contiguous, equal numbeow$ of the gid. In each weep,it will perform the work
needed to update the elements of its assigned rows.

Given this decomposition and assignment, we ead/rto dig into the azhestréion phaseThis
requires that we pin down the ggramming modelWe bein with a high leel, data paallel
model. Then,we examine the two majorggramming models that this and other models might
compile down to: a shared address space and explicit message passing.
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24.4

245

Orchestration under the Data Parallel Model

The data parallel model is ommient for the equation solveetel,since it is naural to view the
computaion as a single thread of control perhing global tansforméions on a lage aray daa
structure,just as we hae done bowe [Hil85,HiS86]. Computation and data are quite mnter
changeablea simple decomposition and assignment of the data leads to good load balesge acr
processesand the ppropride assignments areey regular in shape and can be describgd b
simple pimitives. Pseudocode for thetalgaallel equation solver is shown kigure 2-12 We
assume that global decations (outside any pcedue) describe shared tdaand all other da
are piivate to a process. Dynamically allocated shardd,dach as the ey A, are allocted
with aG_MALLO(globalmalloc ) call rather than aegularmalloc . Other than this, the main
differences from the sequentialogram are the use of aDECOMP statementthe use of
for_all loops instead dbr loops, the use of aigate mydiff varialdle per pocessand the
use of aREDUCEstatementWe have aliead/ seen that for_all loops specify that theatens
can be pedrmed in parallelThe DECOMRBtatement has a tafold pupose Frst, it specifes
the assignment of the ittions to processes (DECOMP is in this sense aorturfae choice of
word). Hee, it is a BLOCK *, nprocs ] assignment, wich means that ther§it dimension
(rows) is partitioned into contiguous pieces among the npracepsesand the second dimen-
sion is not partitioned at all. SpecifyinGYCLIC, *, nprocs ] would have implied a gclic or
interleaed partitioning of ows among nprocs pcessesspecifying BLOCKBLOCK nprocs ]
would hare implied a sublock decomposition, and specifying,[CYCLIC, nprocs ] would
hawe implied an intdeawed partitioning of columng he second anctlaed purpose dDECOMP
is that it also specifies how thedydata should be digiruted among memories on a distited-
memok machine (this isasticted to be the same as the assignment in mosgrntudaa-parallel
languages, following the owner computes rule, which works well in this example).

Themydiff varialde is used to allow each process tstfindgpendenty compute the sum of the
difference values for its assigneddgpoints.Then,the REDUCEtatement directs the system to
add all their partiamydiff values tgether into the sharediff variable The reduction oper
tion may be implemented in a library in a manner best suited to the underlying architecture.

While the data parallel pgramming model is well-suited to specifying partitioning and data dis-
tribution for regular computations on lge arays of dda, such as the equation solvenkel or

the Ocean gplication,the desialde propeties do not hold true for morerégular gplications,
particulary those in vhich the distibution of work among tasks or the conumicdion patern
changes unpedictaby with time. For &ample,think of the stars in Barnes-Hut or theys in
Raytrace Let us look at the moreeftible, lower-level programming models in hich processes
hawe their own individual threads of control and coamicae with each other when they please.

Orchestration under the Shared Address Space Model

In a shared attess space we can simply thee the mé&ix A as a single sharedray—as we did

in the data parallel model—and processes efaremce the parts of it they need using loads and
stores with @actly the same aay indices as in a sequentialogram. Comnanicaion will be
generged implicitly as necessarWith explicit parallel pocesseswe now need mechanisms to
crede the pocessescoodinae them through symconization,and control the assignment of
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1. int n,nprocs; /* grid size (n+2-by-n+2) and number of processes*
float *A, diff=0;

3. main()

4. begin

5. read(n); read(nprocs); ; /* read input grid size and number of processes*/
6. A « G MALLQC(a2-d array of size n+2 by n+2 doubles);

7. initialize(A); /* initialize the matrix A somehow */

8. Solve (A); /* call the routine to solve equation*/

9. end nain

10. procedur e Solve(A) /* solve the equation system */

11. float *A; /* A'is an n+2 by n+2 array*/

12. begin

13. intij,done=0;
14. f 1 oat mydiff =0, temp;
14a. DECOWP A BLOX *];

15.  whi | e (Idone) do [* outermost loop over sweeps */

16. mydiff = 0; /* initialize maximum difference to 0 */

17. for_alli <1 ton do [* sweep over non-border points of grid */
18. for_allj <1 ton do

19. temp = Ali,j]; /* save old value of element */

20. Ali]] « 0.2* (Ali,j] + Ali,j-1] + Ali-1,j] +

21. Alfi,j+1] + Ali+1,]]); /*compute average */
22. mydiff += abs(A[i,j] - temp);

23. end for_all

24, end for_all

24a. REDUCE (nydiff, diff, ADD);

25. i f (diffi(n*n) <TOL) t hen done =1,

26. end while
27. end procedure

Figure 2-12Pseudocode describing the data-parallel equation solver.

Differences from the sequential code are shown in italicized boldTieatdecomposition is still into individual elements, as in
caed by the nested for_all loophe assignment, indicated by the antdinatey labelled DECOMP stament,is into Hocks of con-
tl%uous pws (the fist or column dimension is partitioned inttodéks, and the second oow dimension is not partitionedjhe

REDUCE statement sums the locally computed mydiffs into a global diff value. The while loop is still serial.
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work to processesThe pimitives we use are typical ofvelevel programming emironments
such aparmacgLO+87], and are summarized in Table 2-2.

Table 2-2 Key Shared Address Space Primitives

Name Syntax Function
CREATE CREATE(p,proc,args) Createp processes that start executing gt
proceduregoroc  with argumentsrgs .
G_MALLOC G_MALLOC(size) Allocate shared data size bytes
LOCK LOCK(name) Acquire mutually exclusive access
UNLOCK UNLOCK(hame) Release mutually exclusive access
Global synchronization amonmgimber
BARRIER BARRIER(name, number) processedNone gets past BARRIER unti
number have arrived
WAIT_FOR_END WAIT_FOR_END(number) Wait for number processes to terminate
. while (tflag); or Wait forflag  to be set (spin or block);
wait for flag . . o
WAIT(flag) for point-to-point event synchronization.
flag=1;or Setflag ; wakes up process spinning or
set flag .
SIGNAL (flag) blocked orflag , if any

Pseudocode for the parallel equation solver in a shad@ssdspace is shown Figure 2-13.
The special pmitives for parallelism are shown in italicized bold fartiey are typically imple-
mented as litary calls ormacrosgach of vhich expands to a number of instructions that accom-
plish its goal. Although the code for the Solvegqedue is emarkaby similar to the sequential
version, let's go through it one step at a time.

A single process isrft started up by the o@ting system toxecute the grgram,starting fom
the pocedue called main. Let's call it thmain process. It reads the inputhieh specifies the
size of the gid A (recall that inpuh denotes am@2) -by-(n+2) grid of which n-by-n points ae
updded by the solver). It then allocates thédgA as a two-dimensional ray in the shagd
addess space using tli@ MALLOall, and initializes thergl. The G_MALLOQall is similar
to a usuakmalloc call—used in the C pgramming languge to allocate dataythamicaly in
the pograms heap st@age—and it etums a pointer to the allocated datawéwer, it allocaes
the data in a sharedgon of the hep, so they can be accessed and modified by argepsFor
daa that are notyhamicall allocated on the headifferent systems make tifent assumptions
about wha is shared and & is piivate to a process. Let us assume thatghtlbal” data in the
sequential C mgramming sense—i.e. data tkred outside any pceduresuch asprocs and
n in Figure 2-13—ae shaed Data on a mcedures stack (such amymin, mymax mydiff
temp,i andj) are pivate to a process thakecutes the mcedureas are data allocated with a
regular malloc call (and data that arexicitly dedared to be pvate, not used in this jor
gram).

Having allocated data and initialized thedy the pogram is ead/ to start solving the system. It
therefoe ceaes qprocs-1 ) “worker” processeswhich begin executing at the mcedure
called Sole. The main process then also calls the Soleeguiureso that alhprocs processes
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1. int n,nprocs ; /* matrix dimension and number of processors to be used */
2a. float **A, diff; [*A'is global (shared) array representing the grid */
[* diff is global (shared) maximum difference in current sweep */
2b. LOCKDEC(diff_lock); /* declaration of lock to enforce mutual exclusion */
2c. BARDEC (barl); /* barrier declaration for global synchronization between sweeps*/
3. nain()
4. begin
5. read(n); r ead(nprocs) ; /* read input matrix size and number of processes*/
6. A < G_MALLOC (a two-dimensional array of size n+2 by n+2 doubles);
7. initialize(A); [* initialize A in an unspecified way*/
8a. CREATE (nprocs-1, Solve, A);
8 Solve(A); /* main process becomes a worker too*/
8b. WAl T_FOR_END; /* wait for all child processes created to terminate */

9. end nmin

10. procedur e Solve(A)

11. float **A; /* A'is entire n+2-by-n+2 shared array, as in the sequential program */
12. begin

13. i nt ij, pid, done = 0;

14. f | oat temp, mydiff = 0; [* private variableg

1l4a. int mymin « 1+ (pid* n/nprocs); /* assume that n is exactly divisible by */
14b. int mymax  mymin + n/nprocs - 1; * nprocs for simplicity here*/

15. while (done) do /* outer loop over all diagonal elements */

16. mydiff = diff = 0; /* set global diff to O (okay for all to do it) */

17. fori < mymin tomymax do [* for each of my rows */

18. forj <1 ton do /* for all elements in that row */

19. temp = Ali,j];

20. Alfi,jl = 0.2 * (Ali,j] + Ali,j-1] + Afi-1,j] +

21. Ali,j+1] + Afi+1,]]);

22. mydi ff += abs(A[i,j] - temp);

23. endf or

24. endf or

25a.  LOCK(diff_lock); * update global diff if necessary */

25b. diff += mydiff;

25c.  UNLOCK(diff_lock);

25d. BARRI ER(barl, nprocs); /* ensure all have got here before checking if done*/
25e. if (diff/((n*n) < TOL) then done = 1; [* check convergence; all get same answer*/
25f.  BARRI ER(barl, nprocs); /* see Exercise ¢ */

26. endwhile

27. end procedure

Figure 2-13Pseudocode describing the parallel equation solver in a shared address space.

Line numbes followed by a letter denote lines tha¢m not present in the sequentialsion. The rumbes are chosen to rtch the
line or control swcture in the sequential code withhigh the new lines are _moslbse%related The design of the data sttures
does not hee to hange from the sequential pgram. Processes areseted with the CREATE call, and the main process waits
them to teminate at the end of the pgram with theWAIT_FOR_END call.The decomposition is int@ws, since the inner loop i
unmodified,and the outer loop specifies the assignmentws$ to processes. Bigrs are used to dparae svegs ?an_d to qearate
the conergence test from further modifition of the global diff ariable),and locks are used togeide nutually exclusive access tc
the global diff variable.
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enter the prcedue in parallel as equal gaers. All creged processesxecute the same code
image until they exit from the pgram and teminate This does not mean that they proceed in
lock-step or even xecute the same insttions,since in gneal they may éllow different con-
trol paths through the cod&ha is, we use a gictured,single-pogram-multiple-datastyle of
programming Control aver the assignment ofark to processes—andhich data they access—
is maintained by aefv private variales that acquire diérent values for df€rent processes .@
mymin andmymay), and by simple manipulations of loop contralriatdes. For @ample,we
assume thatvery process upon egtion obtains a uniquprocess identifiergid ) between 0 and
nprocs -1 in its pivate adiress spacend in lines 12-13 uses this pid to determirnéctv rows
are assigned to it. Processes syoaize through calls to syhconizdion primitives.We shall
discuss these primitives shortly

We assume for simplicity that the total numberawisn is an intger multiple of the number of
processesiprocs , so that eery process is assigned the same numbesves.rEach process cal-
culdes the indices of theréit and lastows of its assignedlbck in the pivate variades mymin
andmymax It then proceeds to the actual solution loop.

The outermost while loop (line 21) is stiller successe gid swees. Although the itetions of
this loop proceed sequentigleach itestion or svee is itself eecuted in parallel by all pr
cessesThe decision of whether toxecute the next itetion of this loop is taken paratey by
eadt process (by setting thdone variade and computing thevhile ('done) condition)
ewven though each will make the same decisidreredundant wrk performed here isery small
compared to the cost of communicating a completion flag or the diff value.

The code that pesfms the actual updates (lines 19-22) is essentially identical to that in the
sequential prggram. Other than the bounds in the loop contrdestents,used for assignment,

the only diference is that each process maintains its owwatervariade mydiff . This piivate
varialle keeps tradk of the total diference between new and old values for only its assigridd g
points. It is accumlated it once into the sharetiff varialde at the end of thensep,rather

than adding dectly into the sharedarialde for every grid point. In addition to the siatization

and concueng reason discussed in Secti@i3.1,all processespeatedt modifying and ead-

ing the same sharednale causes a lot ofxpensie comnunication,so we do not want to do
this once per grid point.

The interesting aspect of the rest of thegmm (line 23 onward) is syn@ironization,both rnutual
exdusion and eent syn@ironization,so the rest of the discussion will focus on its&theaccu-
mulations into the sharedavialle by different processes ba to be mtually exclusive To see
why, consider the sequence of instructions that a processoutes to add itswydiff  variable
(maintained say inegsterr2 ) into the sharedliff varialde; i.e. to @ecute the source $ta
mentdiff += mydiff

load the value of diff into register rl
add the register r2 to register rl
store the value of register rl into diff

Suppose the value in thanalde diff is O to begin with, and the value afiydiff in each po-
cess is 1. After two processesbaxecuted this code we would expect the valudiffi to be
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2. However,it may turn out to be 1 instead if the processes happettote their opetions in
the interleaved order shown below.

P1 P2
rl  diff {P1 gets Oinits ri1}
rl — diff {P2 also gets 0}
ri « rl+r2 {P1setsitsrlto 1}
rl  «— ri+r2 {P2 setsits r1 to 1}
diff <rl {P1 sets cell_costto 1}
diff <rl {P2 also sets cell_cost to 1}

This is not viha we intendedThe poblem is that a process (here P2) may ble ¢o read the
value of the Igically sharedliff between the time that another process (P1) reads it ded wr
it back.To prohibit thisinterlearing of opeations,we would like the sets of omtions from dif-
ferent processes txecuteatomically(mutually exclusively) with respect to one anoth&he set
of opesgtions we want toxecute gomically or mutually exclusively is called ecritical section:
Once a process starts tweeute the fist of its three instructionshbawe (its critical section), no
other process carxecute any of the instructions in its msponding critical section until the
former process has completed the last instruction in the critical settiehOCKUNLOCHKpair
around line 25b achieves mutual exclusion.

A lock, such agell_lock , can be vieed as a shared token that aasfan &clusive right.
Acquiring the lock through theOCKprimitive gves a process the right taeszute the dtical
section.The process that holds the lock frees it when it has completed the critical section by issu-
ing anUNLOCKcommand. At this point, the lock is either free for another process to acquire or
be ganted,depending on the implementatidrihe LOCKandUNLOCHKrimitives must be imple-
mented in a &y that guarantees mutuatausion. OurLOCKprimitive takes as argument the
name of the lock being usellssociding names with locks allows us to usefeliént locks to
protect unrelated critical sections, reducing contention and serialization.

Locks are gpensiveand @en a gven lock can cause contention andaiation if multiple pio-
cesses try to access it at the same firhis is another reason to use avgte mydiff  varialde to
reduce accesses to the sharadable This technique is used in many ogt@ns calledreduc-
tions (implemented by thREDUCEpegtion in the data parallel pgram). A reduction is a situ-
ation in which many processes (all, in a global reduction)qrerfassocitive opeations (such as
addition,taking the maximam, etc.) on the samedgcally shared dataAssociatvity implies tha
the order of the opations does not niter. Floating point opeations,such as the ones leeare
strictly speaking not assotiae, since how rounding esrs accurlate depends on the order of
operdions. Havever,the efects are small and we usually ignore them, especially atiitercal-
culations that are anyway approximations.

Once a process has addedntgdiff into the globatliff , it waits until all processes s done
so and the value contained dliff is indeed the total dérence w@er all gid points. This
requires global eent syn@ironizaion implemented here with BARRIER A barier opeation
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takes as an argument the name of theidaand the number of processegoined in the syn-
chronization,and is issued by all those processes. Its semantics akoasfWhen a pocess
calls the baier, it registes the fact that it hasaded that point in the pgram.The process is
not alloved to proceed past the Her call until the specified number of processesigipating
in the barier have issued the beer opesgtion. That is, the semantics 8ARRIER(name,p)
are: wait untilp processes get here and only then proceed.

Barriers are often used tosarde distinct phases of computation in agram. For &ample,in

the Barnes-Hut galaxy sinfetion we use a baer between updating the positions of the stars a
the end of one time-step and using them to commputes at the lgnning of the next oneand

in data mining we may use a kiar between counting ocaences of candidate itemsets and
using the resulting lge itemsets tognerae the next list of candidates. Since they implement all-
to-all event synbrronization,bariers are usually a conseattive way of preseving dgpendences;
usually,not all opestions (or processes) after the fi@r actually need to wait for all opions
before the baiier. More specift, point-to-point or goup eent synaronizaion would enale
some processes to get past their byoigizaion event earlier; havever, from a pogramming
viewpoint it is often more comenient to use a single br than to ochestrée the actual deen-
dences through point-to-point synchronization.

When point-to-point syriwonizdion is neededone vay to orchestrée it in a shared abless
space is with wait and signal opions onsemaphoresyith which we are familiar from opat-
ing systems. A more commonrayis by using normal sharedraldes as synronizdion flags
as shown irFigure 2-14. SinceP1 simply spins around in a tight while loop for something to

P1 P2
A=1,
a: while (flag is 0) do nothing; b: flag = 1;
print A;

Figure 2-14Point-to-point event synchronization using flags.

Suppose we want to ensure that a process P1 does not get past a certain point (say ayjiartherjiit some other process P2
alread reated another point (say b). Assume that tgadde flag (and A) was initialized to O bere the processesrae at this sce
naiio. If P1 gets to statement a after P2 hasaajr executed statement B1 will simply pass point a.,lén the other handP2 has nc

et executed bthen P1 will remain in th&dle” while loop until P2 eades b and s_etsagvtao 1, at vinich point P1 will exit the idls
oop and poceed If we assume that the writes by P2 are seen by P1 in the ordeicmthey are pedrmed,then this syngroniza-
tion will ensure that P1 prints the value 1 for A.

happenkeeoing the processor busy during this times call thisspin-waitingor busy-waiting
Recall that in the case of a sgyhate the waiting process does not spin and consuoeegsor
resouces but ather Hocks (suspends) itselind is aoken when the other process signals the
semaphore.

In event synaironizaion among subsets of guessespor group event synchnization one or
more processes may act a®guces and one or more as consumers. Groxgmiesynbéroniza-
tion can be arthestréed either using alinaty shared ariabes as f#gs or by using baiers among
subsets of processes.
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Once it is past the haer, a process reads the valuediff and examines whether theesage
difference oer all gid points giff/(n*n) ) is less than the \r tolerance used to deteine
convergencelf so, it sets the doneaf] to exit from the while loop; if not, it goes on to merh
another sweep.

Finally, theWAIT _FOR_END called by the main process at the end of thgrgm (line 11) is a
paticular form of all-to-one syrlgronizdion. Through it, the main process waits for all the
worker processes it eged to teminate The other processes do not d&MIT_FOR_END, but
implicitly paticipate in the synlronizdion by teminding when they exit the Sadv procedure
that was their entry point into the program.

In summay, for this simple equation solver the paralledgrmam in a shared adess space is not
too different in stucture from the sequential pgram. The major diferences are in the cootr
flow—which are implemented byhandng the bounds on some loops—ime&mg processes and
in the use of simple ancegeic syndironizdion primitives.The body of the computational loop
is undanged,as are the major data wttures and eferences to them. @&n a stateg for
decompositionassignment and syhionization,inserting the necessaryimitives and making
the necessary modifitions is quite mechanical in thisample Changes to decomposition and
assignment are also easy to immmate While many simple mgrams hae this popety in a
shaed adiress space we will see later that more substartaiges are needed as we seek to
obtain higher and higher parallel pmrhanceand also as we dtess more complex parallelgpr
grams.
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Example 2-2

Answer

How would the code for the shareddaelss space paralleérsion of the equ#on
solver change if we retained the same decomposition itesr but thianged to a
cyclic or interleaved assignment of rows to processes?

Figure 2-15 shows theelevant pseudocod@ll we have changd in the code is the

17. fori « pid+l1 tonbynprocs do /*for my interleaved set of rows*/
18. forj <1 ton do [* for all elements in that row */
19. temp = Ali,j];

20. A[ijl 7 0.2 * (A[lj] + Ali,j-1] + Ali-1,j] +

21. Ali,j+1] + Afi+1,j]);

22. nydi ff += abs(A[i,j] - temp);

23. endf or

24. endf or

Figure 2-15Cyclic assignment of row-based solver in a shared address space.

All that changes in the code from thddzk assijqnment ofaws in Figure 2-13is first for statement in line 1The data strctures oi
accesses to them do not have to be changed.

contol arithmetic in line 17The same global data stture is used with the same
indexing, and all the rest of the parallel program stays exactly the same.

2.4.6 Orchestration under the Message Passing Model

We now examine a possible implementation of the paralleésosing explicit messge passing
between pivate adiress spaces, employing the same decomposition and assignmerdras bef
Since we no longer ke a shared alless spacewe cannot simply déare the mé&ix A to be
shaed and hee processegference parts of it as they would in a sequentiagjmm. Raher,the
logical data stucture A must be epresented by smaller data wsttures,which are allocted
among the pvate adiress spaces of the coogiitg processes in accordance with the assignment
of work. The process that is assignedlack of rows allocates thoseows as a sub+gl in its
local address space.

The messge-passing mrgram shown inFigure 2-16 is stucturally very similar to the shad
addess space pgram inFigure 2-13 (more complex prgrams will reveal further diferences in
the next bapter,see Sectio3.7). Here too, a main process is started by theatipgrsystem
when the ppgram eecutalte is invoked,and this main processeates fiprocs-1 ) other po-
cesses to colorae with it. We assume thatvery creded process acquires a process idemtifi
pid between 0 andprocs-1 , and that theCREATEcall allows us to comomicae the po-
grams input paametes ( andnprocs ) to the adress space of eachaeess: The outemost

1. An altenative oganizdion is to use Wwa is called dhostless”’model, in vhich there is no single main
process.The number of processes to be used is specified to the system whewsgtheps irvoked The
system then starts up that many processes anibdiet the code to thelevant processing nodeBhere is
no need for &CREATEprimitive in the pogram itself every process reads theqgram inputs i@ and
nprocs ) separately, though processes still acquire unique usepidvasl
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1. int pid, n, nprocs ; /* process id, matrix dimension and number of processors to be used */
2. float **myA,;
3. main()
4. begin
5. read(n); read(nprocs) ; * read input matrix size and number of processes*/
8a. CREATE (nprocs-1 processes that start at procedure Solve);
8b. Solve(); /* main process becomes a worker too*/
8c. WAI T_FOR_END; /* wait for all child processes created to terminate */
9. end main
10. procedur e Solve()
11. begin
13. i nt ij, pid, n’ = n/nprocs, done = 0;
14. f | oat temp, tempdiff, mydiff = 0; [* private variables
6. myA ~ malloc(a 2-d array of size [n/nprocs + 2] by n+2); /* my assigned rows of A
7. initialize(myA); /* initialize my rows of A, in an unspecified way*/
15. whi | e (!done) do
16. mydiff = 0; /* set local diff to 0 */
16a. if (pid != 0) then SEND(&myA[1,0],n*sizeof(float),pid-1,ROW);
16b. if (pid = nprocs-1) then SEND(&myA[n’,0],n*sizeof(float),pid+1,ROW);
16c. if (pid != 0) then RECEI VE(&myA[0,0],n*sizeof(float),pid-1,ROW);
16d. if (pid != nprocs-1) then RECEI VE(&myA[n'+1,0],n*sizeof(float),pid+1,ROW);
/* border rows of neighbors have now been copied into myA[0,*] and myA[n'+1,*] */

17. fori <1 ton do /* for each of my rows */
18. forj <1 ton do [* for all elements in that row */
19. temp = myA[i,j];
20. myAl[i,j] ~ 0.2 * (myA[i,j] + myA[i,j-1] + myA[i-1,j] +
21. myA[i,j+1] + myA[i+1,]);
22. mydiff += abs(myAl[i,j] - temp);
23. endf or
24. endf or

/* communicate local diff values and obtain determine if done; can be replaced by reduction and broad
25a. if (pid!=0) t hen /* process 0 holds global total diff*/
25b. SEND(mydiff,sizeof(float),0,DIFF);
25c. RECEI VE(mydiff,sizeof(float),0,DONE);
25d. else
25e. fori «~ 1 tonprocs-1 do /* for each of my rows */
25f. RECEI VE(tempdiff,sizeof(float),*,DONE);
25g. mydiff += tempdiff; /* accumulate into total */
25h. endf or
25i. fori «~ 1 tonprocs-1 do [* for each of my rows */
25j. SEND(done,sizeof(int),i, DONE);
25k. endf or
25l  endif
26. i f (mydiff/((n*n) < TOL) t hen done = 1;
27. endwhile
28. end procedure

3

Figure 2-16Pseudocode describing parallel equation solver with explicit message-passing.

Now the meaning of the datawsttures and the indexing of therhanges in going to thergarallel code. Each process has its g
data stucture that epresents its assigned part of thégand myA[l,i ] ]

the lagical overall grid. The comnunicéion is all contained in lines 16 a-d and 25 a-f. No locks aiidrarare neededince the syr
chronizdion is implicit in the sendeceiwe pairs. Seeral extra lines of code are added t@hestrée the comranicaion with simple

sends and receives.

| referenced by d

rent processesfers to diferent parts c
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loop of theSolve routine (line 15) still itestes wer gid sweeps until corergence In every
iteration a process pasfms the computation for its assignemivs and commnicaes as neces-
sary The major diferences are in the datawgttures used toapresent the Igically shared miix

A and in how interprocess communication is implemented. We shall focus on these differences.

Instead of epresenting the ntex to be factoed as a single globah{2)-by-(n+2) aray A, eat
process in the mesga-passing pgram allocates an @y calledmyA of size (procs/n +

2) -by-(nprocs/n + 2 ) in its piivate adlress spaceThis aray represents its assigned
nprocs/n  rows of the lgically shared migix A, plus two pws at the edges to hold the bound-
ary data from its neighboring partitiorishe boundaryows from its neighbors must be comm
nicaed to it plicitly and copied into thesetea orghostrows. Ghost ows are used because
without them the commmicaed data would hee to eceiwed into sparde one-dimensional
arrays with different names eaed specially for this ppose ,which would complicate thesfer-
encing of the data when they are read in the inner loop (lines 20-21). @ucat®d data hae to
be copied into theeceivers piivate adiress space gway, SO ppgramming is made easiey b
extending the existing data structure rather than allocating new ones.

Recall fromChepter1 that both commnicaion and synbronizaion in a messge passing -
gram are based on twoimitives: SENDandRECEIVE The pogram event that initiates da
transkr is theSENDopeagtion,unlike in a shared aldess space kere data tanskr is usually ini-
tiated by the consumer oeceiver using a load instructiokVhen a mesge arives at the desti-
nation processorjt is either lept in the netwrk queue or temparily stored in a systemuffer
until a process running on the destination processor p&EC&IVE for it. With aRECEIVE,

a process reads an incoming megssaom the netwrk or system bffer into a designated g@mn

of the pivate (gplicaion) adiress space. RECEIVE does not in itself cause any data to be
transferred across the network.

Our simple SEND and RECEIVE ipritives assume that the data beiransfered are in a con-
tiguous egon of the virtual adress spacélhe arguments in our simp&ENDcall are the star
addess—in the sending ressos piivate adiress space—of the data to be sent, the size of the
messag in bytes,the pid of the destination gress—whib we must belde to name ne, unlike

in a shared attess space—and an optional tag or type associated with thegméssmaching

a the eceiver The arguments to thRECEIVE call are a local attess at wich to place the
received daa, the size of the mesga, the sender’s process, idnd the optional mesgatag or
type The sender’s id and thegtaf presentare used tperfom a mach with the messges tha
hawe arived and are in the systerafter, to see vaich one coresponds to thesceive Either or
both of these fields may be wild-datin which case they will mah a messge from any sowre
process or with any tarespectivelySENDandRECEIVE primitives are usually implemented in
a library on a specific ahitecture just like BARRIERandLOCKIn a shared atfess spaceA
full set of messge passing pmitives commonly used in realqgrams is part of a standhr
called the Mesge Passing Interface (MPI), described afedént levels of detail in [Rc96,
MPI93, GLS94]. A significant extension isatisfes of non-contiguousegons of memaoy, either
with regular stide—sudt as gery tenth word in between adtesses andb, or four words every
sixth word—or by using index aays to specify unstictured adiresses from Wich to gather
daa on the sending side or tchish to scatterdata on theeaceving side. Another is a Ige
degee of fexibility in specifying tags to mah messges and in the potential complexity of a
matdh. For eample,processes may be divided intmgps that comomicae certain types of
messags only to each otheand collectre comnunicaion opegtions may be pvided as
described below.
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Semanticallythe simplestdrms of SEND and RECEIVE we can use in owgmam are the so
calledsynchronougorms. A syntironous SENDetums control to the calling process onljen
it is clear that the coesponding RECEIVE has been merhed A syndironous RECEIVE
retums control when the datavebeen eceived into the destinationuffer. Using synbronous
messagespur implementation of the commicaion in lines 16a-d is actually deadkesxl All
processa do their SEND fst and stall until the coesponding eceiwe is perbrmed,so none
will ever get to actually pesfm their RECEIVE! In gneral,syndironous mesgg passing can
easiyy deadlock on pairwisexehangs of data if we are not careful. Oneywto avoid this pob-
lem is to hae every altemae processor do its SENDssf followed by its RECEIVES, and the
othess start do their RECEIVEs it followed by their SENDsThe altenative is to use dierent
semantic flavors of send and receive, as we will see shortly.

The comnunicaion is done all at once at thedirning of each iteation, rather than elementyb
element as needed in a sharedress space. It could be done element by element, buvdine o
head of send ancceiwe opeations is usually too lge to make this gproat perbrm reason-

ably. As a esult,unlike in the shared ddess spaceersion there is no computational askirany

in the messge-passing mgram:Even though one process updates its bounasvg while its
neighbor is computing in the sameeep,the neighbor is guaranteed not see the updates in the
current svee since they are not in its d@ss space. A process thfenre sees the values in its
neighborsboundary ows as they wre at the end of the @rious sveep,which may cause mer
swe@s to be needed for caergence as per our earlier discussioed(bla& ordeling would

have been particularly useful here).

Once a process hasceived its neighba@’ boundary ows into its ghostows, it can update its
assigned points using code almosadatly like that in the sequential and sharedirads space
programs. Although we use a flifent name (myA) for a pcesss local aray than the A used in
the sequential and shareddegbs space pgramsithis is just to distinguish it from tHegically
shaed entire gd A which is here only conceptual; we could just as welichased the nanis).
The loop bounds are fi#frent, extending from 1 tmprocs/n  (substituted byr' in the code)
rather than 0 tm-1 as in the sequential ggram ormymin to mymaxin the shared abtess
space pogram. In fact, the indices used teferencemyAare local indices, hich are diferent
than the global indices that would be used if the entgieddly shared gd A could be eferenced
as a single sharedray. Tha is, themyA[1,j] reference by diferent processegfers to difer-
ent ows of the lgically shared gd A. The use of local index spaces can be sanaemore
tricky in cases where a global index must also be used explicitly, as seen in Exercise 2.4.

Synchronizationincluding theaccumulgion of plivate mydiff ~ varialdes into a lgically shaed
diff variade and the ealudion of the done condition, is perfned \ery differently here than
in a shared atfess space. @n our simple sydgonous sends aneceies which bock the
issuing process until they completiee send-@ceive mdch encasuldaes a synieronizdion event,
and no special opations (like locks and baers) or additional ariades are needed to @res-
trate mutual gclusion or @ent syntironizaion. Consider mutuabelusion.The Iagically shaed
diff variade must be allocated in someopesss pivate adiress space (here processThe
identity of this process must be known to all the otherenBwocess sends itsydiff  value to
process 0, Wich receives them all and adds them to thgitally shared globaiff . Since ony
it can manipulate this gpcally shared ariade mutual &clusion and séalization are néural and
no locks are needed. Iadt, process 0 can simply use its omydiff variabe as the global
diff

122 DRAFT: Parallel Computer Architecture 9/10/97



Parallelization of an Example Program

Now consider the globalvent syntironizaion for determining the done condition. Once it has
received themydiff values from all the other processes and actated them, it sends the
accumul#ed value to all the other gresseswhich are waiting for it with @ceive calls.There is

no need for a baer since the completion of theaeive implies that all ppcesses mydiff s
hawe been accunlated since process 0 has sent out the reBl#. processes then compute the
done condition to determine whether or not to proceed with anotesp.sWe could instead
hawe had process 0 alone compute the done condition and then seluh¢hgariable,not the
diff  value,to the othes, saving the redundant calculation of the done conditMecould of
coursejmplement lock and beer calls using mesgas if that is more caenient for pogram-
ming, although that may lead t@quest-regl comnunicaion and more gund-tip messges.
More complex sendeceive semantics than the symonous ones we kia used here magquire
additional synchronization beyond the messages themselves, as we shall see.

Notice that the code for the acculaion and done conditionvalugion comnunicaion has
expanded to seeral lines when using only point-to-point SENDs and RECEIVES as coriva-
tion opestions. In pactice, programming emironments would mvide library functions like
REDUCE (accunalate values from pvate varialdes in multiple processes to a sing&iale in

a gven process) anBROADCAST (send from one process to all processes) to thgrgammer
which the gplicaion processes could use atitly to simplify the codein these stylized situa-
tions. Using theseines 25a through 25b iRigure 2-16 can be eplaced by the two lines in
Figure 2-17. The system may pvide special support to imgve the perdrmance of these and
othercollective communicatioopegtions (such amulticastfrom one to seeral or even seeral

to several processesor all-to-all comnunicaion in which every process tinsfes data to eery
other pocess)for example by reducing the sofive overhead at the sender to that of a single
messageor they may be built on top of the usual point to point send ecale in useiflevel
libraries for programming convenience only.

/* communicate local diff values and determine if done, using reduction and broadcast */
25b.  REDUCE(0,mydiff,sizeof(float),ADD);
25c. if (pid == 0) then
25i. i f (mydiff/(n*n) < TOL) t hen done =1,
26. endif
25k.  BROADCAST(0,done,sizeof(int),DONE);

Figure 2-17 Accumuldion and comergence deteninaion in the solver using REDUCE and BRDCAST instead of SEND an
RECEIVE.

The first argument to thBEDUCEcall is the destination process. All but this process will do a send to this Proce'_ss in the impl:
tion of REDUCEwhile this process will do aceive The next argument is theiyate variable to be reduced from (in all otheropr
cesses than the destination) and to (in the destinatime$s)and the third argument is the size of thasiable The last argument i
the function to be pesfmed on the arialdes in the reduction. Similly the frst argument of thBROADCASEall is the sender; thi
process does a send and all others decaive The second argument is thariatle to be broadcast andaeived into, and the third i
its size. The final argument is the optional message type.

Finally, we said earlier that sendand eceive opeations come in dferent semantic évors,
which we could use to solve our deadlocklpem. Let us examine this a little ther The main
axis along vhich these #vors differ is their completion semantics; i.e. when thetym contol
to the user process that issued the senéa®ive These semanticsfatt when the data sic-
tures or luffers they use can be reused without compromisingecbressThere are two major
kinds of sendé&ceive—synchronousandasynchronousWithin the class of asyheconous mes-
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sagesthere are two major kindblockingandnon-blocking Let us examine these and sea ho
they might be used in our program.

Synchronousends andaceies are Wa we assumedve,since they hae the simplest seman-
tics for a pogrammerA syndironous sendetums control to the calling process only when the
corresponding syrtmonous eceive at the destination end has completed successfully and
retumed anacknavledgment to the sender. Until thekaowledgment is eceived,the sending
process is suspended and canixetate any code thablfows the send. Receipt of thekaowl-
edgment implies that thesceiver has etrieved the entire mesga from the systemuffer into
applicaion spaceThus,the completion of the send guaranteesr{bahadware erors) that the
messag has been successfulgceived and that all associated dataustures and bffers can be
reused.

A blockingasynchronousend etuns control to the calling process when the ngs$as been
taken from the sendingpalications source data sicture and is thesfore in the care of the sys-
tem. This means that when control isturned,the sending process can modify the sourda da
structue without afecting that mesgg Compared to a syhmnous sendhis allows the send-
ing process to resume soonaut the etum of control does not guarantee that the ngessall
actually be delvered to the ppropride process. Obtaining such a guarantee waddire adli-
tional handshakingA blocking asyn@ironous eceiwe is similar in that itetums control to the
calling process only when the data itéseving have been successfullgmowed from the sys-
tem huffer and placed at the designat@glacaion adiress. Once itaturns,the gplicaion can
immediatey use the data in the specifiedpication huffer. Unlike a synbronous eceive,a
blocking receive does not send an acknowledgment to the sender.

Thenonblockingasyntironous send aneceie allow the geaest averlap between computian
and messge passing byatuming control most quidy to the calling process. A nololgking
send etums control immedigely. A nondocking receiwe retums control after simply posting the
intent to eceive; the actual receipt of the megsand placement into a specifiggpbcaion daa
structue or huffer is perbrmed asynleronousy at an undetermined time by the system, on the
basis of the poste@ceive In both the nonbcking send andeceive however,the etum of con-
trol does not imply anything about the state of the nyeseathe pplicaion data stictures it
uses,so it is the user’s responsibility to determine that state when necelsarstate can be
detemined through gmarde calls to pmitives thatprobe (query) the sta Nondocking mes-
sages are thus typically used int@o-phase manner:réit the sendéceive opeation itself, and
then the probeslhe pobes—whit must be mvided by the mesga-passing likary—might
either Bock until the desired state is obged, or might etum control immeditely and simpy
report what state was observed.

Which kind of send&ceive semantics we choose depends on how tigrgm uses its data at-
tures,and on how mch we want to optimize pesfmance wer ease of ugramming and paa-
bility to systems with other semantidhe semantics mostlyfaicts @ent syntironization,since
mutual eclusion falls out naurally from having only pwate adiress spaces. In the edjoa
solver exkample,using asynicronous sends wouldvaid the deadlock phblem since pocesses
would proceed past the send and to #ezive However,if we used nonlecking asynaironous
receiveswe would hae to use a probe lmE actually using the data specified in theeive.

124

DRAFT: Parallel Computer Architecture 9/10/97



Concluding Remarks

2.5

Note that a locking send/eceiw is equialent to a nonllbcking send/eceive followed immedi-
ately by a blocking probe.

Table 2-3 Some Basic Message Passing Primitives.

Name Syntax Function

CREATE CREATE(procedure) Create process that startpaicedure
Global synchronization amomgimber

BARRIER BARRIER(name, number) processedNone gets past BARRIER unti
number have arrived

WAIT_FOR_END WAIT_FOR_END(number) Wait for number processes to terminate

SEND SEND(src_addr, size, Sendsize bytes starting adrc_addr

dest, tag) to thedest process, witliag identifier

Receive a message with tlag identifier
from the src process, and fsige  bytes
of it into huffer starting abuffer_addr

RECEIVE(buffer_addr,

RECEIVE )
size, src, tag)

Check if message with identifier tag has
been sent to process dest (only for asyry
chronous message passing, and meanitg
depends on semantics discussed abovg)

SEND_PROBE SEND_PROBE(tag, dest)

Check if message with identifier tag has
been received from process src (only fo
asynchonous mesgg passingand mean-
ing depends on semantics)

RECV_PROBE RECV_PROBE(tag, src)

We leave it as anxercise to tansfom the messge passing @rsion to use ayclic assignment, as
was done for the shareddadss spaceersion in Example€-2. The point to obsee in that case
is that while the two mesge-passing &rsions will look syntactically similathe meaning of the
myAdaa stucture will be completely dferent. In one case it is a section of the globedyaand
in the other is a set of widely g@raed ows. Only by careful inspection of the dataustures
and commnicdion pdatems can one determine how aen messge-passing &rsion core-
sponds to the original sequential program.

Concluding Remarks

Stating from a sequentialpplication,the process of parallelizing thpicaion is quite stuc-
tured:We decompose theosk into tasks, assign the tasks togessesprchestrée data access,
communicéion and synronizdgion among pocessesand optionally map processes t@qes-
sors. For many pplications,including the simple equation solver used in thiapter,the initial
decomposition and assignment are similar or identegénless of whether a shareddaess
space or mesga passing mgramming model is usedhe diferences are inrchestrationpar
ticularly in the way data stuctures are agganiz2d and accessed and thayveommnunicaion and
synchronizéion are perdrmed A shared adress space allows us to use the same majar da
structues as in a sequentialggram:Comnunicdion is implicit through data accesses, and the
decomposition of data is naquired for corectness. In the meggapassing case we must syn-
thesiz the |gically shared data stcture from pefprocess pwate data stictures:Commnunica-
tion is &plicit, explicit decomposition of data amongivate adiress spaces (processes) is
necessaryand processes must baleato name one another to commnicate On the other hand
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2.6

while a shared attess space pgram requires additional syrwonizdion piimitives sparate
from the loads and stores used for implicit camioation,syndironizaion is bundled into the
explicit send andeceive comnunicaion in many brms of messge passing. As we examine the
parallelizaion of more complex parallepalicaions such as the four case studies introduced in
this chapter,we will understand the implications of thesdfat#nces for ease of ggramming
and for performance.

The parallel ersions of the simple equation solver that we described heme puely to illus-
trate plogramming pimitives.While we did not useersions that kearly will perform terribly
(e.g we reduced comumicaion by using a lock rather than gclic assignment ofaws, and we
reduced both comumicaion and synbronizaion dramaticaly by first accuralating into local
mydiff s and only then into a globdiff ), they can use imprementWe shall see how in the
next chapter,as we turn our attention to the perhance issues in parallelqgramming and he
positions taken on these issues affect the workload presented to the architecture.
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2.7 Exercises

2.1 Short Answer Questions:

a. Describe two examples where the a good parallel algorithm must be based on a serial
algorithm that is different than the best serial algorithm, since the latter does not afford
enough concurrency.

b. Which of the case study applications that we have described (Ocean, Barnes-Hut, Ray-
trace) do you think are amenable to decomposing data rather than computation and using
an owner computes rule in parallelization? What do you think would be the problem(s)
with using a strict data distribution and owner computes rule in the others?

2.2 <2.4.5>Theax are two dominant models for how parent anittoen processesldae to eah
other in a shared ddckess space. In the hgaveight UNIX processdrk model, when a jor
cess oedes anotherthe child gets a prate copy of the paent’s imaye: that is, if the pant
had allocated aariale x, then the child also finds anale x in its adiress space kch is
initialized to the value that the parent had for x whereitted the child; havever,any modi-
fications that either process makes subsequently are to its own copy of x and are not visible tc
the other process. In the lightweight threads model, the child process or thread gets a pointe
to the paent’s image, so that it and the parent now see the samagatdocation for xAll
daa that any process or thread allocates are shared in this mampl, those that are on a
procedure’s stack.

a. Consider the mblem of a process having teference its process identifier procid iari
ous parts of a program, in different routines in a call chain from the routine at which the
process bgins execution. How would you implement this in thesficase? In the second?
Do you need private data per process, or could you do this with all data being globally
shared?

b. A program written in the former (fork) model may rely on the fact that a child process
gets its own private copies of the parents’ data structures. What changes would you make
to port the ppgram to the latter (threads) model for datactures that are (i) only read by
processes after theeaion of the tiild, (ii) are both read and writteN?hat performance
issues might arise in designing the data structures (you will be better equipped to answer
this part of the question after reading the next few chapters)?

2.3 Synchronization.

a. The classic boundediffier poblem piovides an example of point-to-pointent synéiro-
nization. Two processes communicate through a finite buffer. One process—the pro-
ducer—ads data items to auffer when it is not full, and another—the consumer—reads
daa items from the udfer when it is not empty. If the consumer finds thffdy emptyit
must wait till the producer inserts an iteviihen the producer i®ad/ to insert an item, it
checks to see if the buffer is full, in which case it must wait till the consumer removes
something from the buffer. If the buffer is empty when the producer tries to add an item,
depending on the implementation the consumer may be waiting for notification, so the
producer may need to notify the consumer. Can you implement a bounded buffer with
only point-to-point event synchronization, or do you need mutual exclusion as well.
Design an implementation, including pseudocode.
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b. Why wouldn't we use spinning for intprocess syrntwronizdion in uniprocessor opaing
systems? What do you think are the tradeoffs between blocking and spinning on a multi-
processor?

c. Inthe shared altess space parallel equation sohg(re 2-13 on pge 114),why do we
need the second biaar at the end of a while loop iion (line 25f)? Can you eliminate it
without inserting any other synchronization, but perhaps modifying when certain opera-
tions are performed? Think about all possible scenarios.

2.4 Do LU factorizdion as an xercise Descibe, give a simple contiguous decomposition and

assignmentdraw concureng/ profile, estimate speedup assuming no camitgion over-
headsand ask to implement in a sharedli@ds space and in megsgassing. Modify the
messag-passing pseudocode to implement an liedeed assignment. Use both shinanous
and asynicronous (focking) sends andeceives.Then inteleaving in both diections,do the
same.

2.5 More syndironizdion. Suppose that a system supporting a shardoksasl space did not sup-

port bariers but only semghores. Event syrfmonizaion would hae to be constrcted
through semphores or odinaty flags. To coodinae P1 indicating to P2 that it hasached
point a (so that P2 can proceed past poinhbmvit was waiting) using serphoresP1 per
forms await (also called? or down) opegtion on a semghore when it eadhes pointa, and
P2 performs asignal (or V or up) opegtion on the same sempiaore when it eades poinb. If
P1 gets toa beforeP2 gets tdb, P1 suspends itself and is awoken®®s signal operation.

a. How might you orchestrate the synchronization in LU factorization with (i) flags and (ii)
semaphores replacing the barriers. Could you use point-to-point or group event synchro-
nization instead of global event synchronization?

b. Answer the same for the equation solver example.

2.6 Other than the lzowe “broadcast”gpproach,LU factorizdion can also be pallelized in a

form that is more ggressie in exploiting the aailabe concurency We call this érm the
pipelinedform of paallelization,since an element is computed from the producing process to
a consumer in pipelinedifm via other consumsgywhich use the element as they coomi

cate it in the pipeline.

a. Write shared-address-space pseudocode, at a similar level of detail as Figure 2-13 on
page 114,for a \ersion that implements pipelined parallelism at thenglaity of individ-
ual elements (as described briefly in Section 2.4.2). Show all synchronization necessary.
Do you need barriers?

b. Write message-passing pseudocode at the level of detail of Figure 2-16 on page 120 for
the above pipelined case. Assume that the only communication primitives you have are
synchronous and asynchronous (blocking and nonblocking) sends and receives. Which
versions of send and receive would you use, and why wouldn’t you choose the others?

c. Discuss the tradeoffs (programming difficulty and likely performance differences) in pro-
gramming the shared address space and message-passing versions.

d. Discuss the tradeoffs in programming the loop-based versus pipelined parallelism

2.7 Multicast (sending a mesgafrom one process to a named list of other processes) is a useful

mechanism for communicating among subsets of processes.

a. How would you implement the message-passing, interleaved assignment version of LU
factorization with multicast rather than broadcast? Write pseudocode, and compare the
programming ease of the two versions.

b. Which do you think will perform better and why?
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c. Whda other“group comnainication”primitives other than multicast do you think might be
useful for a mesgg passing system to support¥&éexamples of computations irnigh
they might be used.
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CHAPTER 3

Programming for Performance

Morgan Kaufmann is pleased to present ntarial from a preliminary draft of Parallel Computer Architectur e; the
material is (c) Copyright 1996 Morgan Kaufmann Publishers. This material may not be used or distibuted for any
commercial purpose without the express written consent of Morgan Kaufmann Publishers. Please note that this
material is a draft of forthcoming publication, and as such neither Mogan Kaufmann nor the authors can be held
liable for changes or alterations in the final edition.

3.1

Introduction

The goal of using mitiprocessas is to obtain high pesfmance Having understood coretely
how the decomposition, assignment andhastréion of a parallel ppgram are incqroraed in
the code that runs on the rhéme, we are ead/ to examine thedy factoss that limit parallel per
formance and understand how they aredeebsed in a wideange of poblems.We will see hay
decisions made in dédrent steps of the pgramming process fdct the runtime ltaracteristics
presented to the @hitectureas well as how theharacteistics of the arhitectue influence pr-
gramming decisions. Understandingopgramming techniques and these idependencies is
important not just for parallel softave designers but also forchitects. Besides helping us
undestand parallel pigrams as wrkloads for the systems welilil, it also helps usppreciate
hardware-softwar tradeofs; that is, in viha aspects of mgrammaility and perbrmance can the
architectue be of assistancand vwha aspects are best left to softne The intedependencies of
progam and system are moreifl, more complex and ka far geaer perbrmance impact in
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multiprocessa than in unipscessos; hencethis understanding isew important to our goal of
designing high-pedrmance systems that reduce cost amafyamming efort. We will cary it
forward with us throughout the book, starting with concrete guidelines @wklead-driven
architectural evaluation in the next chapter.

The space of pasfmance issues and techniques in parallel so&vs \ery rich: Different goals
trade off with one anotheand techniques that further one goal may cause @sisit the tet-
nigues used to adess anotheiThis is wha makes the eion of parallel software so integst-
ing. As in unipocessorsmost perbrmance issues can bedaglssed either by adgthmic and
progamming techniques in sofase or by achitectual techniques or botfThe focus of this
chapter is on the issues and on saftevtechniquesArchitecturl tedniques,sometimes hinted
at here, are the subject of the rest of the book.

While there are seral interacting pedrmance issues to contend with, they are not all dealt with

at once.The process of eging a high-perdrmance pogram is one ofuccessig refinementAs
discussed itChater2, the partitioning steps—decomposition and assignment—ayeylande-
pendent of the undeting arcchitectue or comnanicaion &bstraction,and concern themsels

with major algrithmic issues that depend only on the inhereapeties of the poblem. In par

ticular, these steps view theuttiprocessor as simply a set obpessos that commnicae with

one anotherTheir goal is to @sole the tension between balancing therkload across -
cessesreducing intgprocess commmication,and reducing thexéra work needed to compute

and manage the partitioning. We focus our attention first on addressing these partitioning issues.

Next, we open up the ehitectue and examine the new pemhance issues it raises for the
orchestrdon and mapping steps. Opening up thehaiectue meansecaynizing two factsThe
first fact is that a mitiprocessor is not only a collection ofggessos but also a collection of
memoriespne that an individual processor can view as an extended memanghjeFhe man-
agement of data in these memory hiehies can cause more data to leasfered across the net-
work than the inherent comumicaion mandated by the partitioning of theomw among
processes in the parallelqgram. The actual comemicaion that occurs thefore depends not
only on the partitioning but also on how thegrams access peems and locality of dataefer-
ence interact with the ganizdion and mangement of the extended memory ety The sec-
ond fact is that the cost of commicaion as seen by the processor—and hence theilmatidn

of comnunicdion to the &ecution time of the mgram—d@ends not only on the amount of
communicéion but also on how it is stctured to interact with the ehitecture The elationship
between commnication, data locality and the extended memory &ieky is discussed in
Section3.3. Then, Section3.4 examines the softawe techniques to adess the major peof-
mance issues in chnestréion and maping: techniques for reducing th&tea comnunicaion by
exploiting data locality in the extended memory hrehy,and techniques for stctuiing com-
munication to reduce its cost.

Of course, the achitectual interactions and conumicaion costs that we must deal with in
orchestrdon sometimes cause us to go back aike our partitioning methods,hich is an
important part of the efinement in parallel gramming While there are interactions and
tradeofs among all the pesfmance issues we discuss, thepter discusses each inmndently
as far as possible and identifieadeofs as they are encountelk Examples are éwn from the
four case studypplicaions thoughout,and the impact of some individualogramming teb-
niques illustated through measurements on a particulaheamheent machine with pfsically
distributed memaoy, the Silicon Gaphics Oigin2000, which is described in detail in
Chepter8.The equation solverdmel is aso caied through the discussion, and the perfance
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techniques are applied to it aslevant,so by the end of the discussion we wilvbaeaed a
high-performance parallel version of the solver.

As we go through the discussion of penfiance issues, we will delop simple analytical mod-
els for the speedup of a parallebgram,and illustete how each pesfmance issue &dcts the
speedup equation. Mever,from an achitectual pespectivea more concreteay of looking d
performance is to examine the fifent components ofxecution time as seen by an widual
processor in a machine; i.e. howch time the processor spendgeuting instuctions,access-
ing data in the extended memory kiehy,and waiting for syrtronizdion events to occur. In
fact, these components okexution time can be mappedatitly to the perdrmance &ctos tha
softwae must adress in the steps ofesting a parallel ppgram. Examining this view of pesi-
mance helps us understanglywconcetely wha a parallel gecution looks like as a avkload
presented to the ehitectureand the mapping helps us understand hagmpmming tebniques
can alter this mfile. Togetherthey will help us learn how to useggrams to galude achitec-
tural tradeoffs in the next chapter. This view and mapping are discussed in Section 3.5.

Once we hee understood the pearmance issues and tediqueswe will be ead/ to do wha we
wanted to all along: understand how teae high-perbrmance parallel ersions of comple,
realistic gplicaions; name}, the four case studies. Secti® applies the patlelizaion pro-
cess and the penimance techniques to each case study m, tllustrating how the telniques
are emplged tayether and theange of resulting gecution daracteistics presented to ancui-
tecture,reflected in arying profiles of execution time.We will also fnally be ead/ to fully
undestand the implications of realistipglicaions and ppgramming techniques foradeoffs
between the two major lger-level programming models: a shareddxdss space andkg@icit
messag passingThe tiadeofs of interest are both in ease obgmamming and in peofrmance,
and will be discussed in Secti8rv. Let us bgin with the algrithmic perbrmance issues in the
decomposition and assignment steps.

3.2 Partitioning for Performance

For these stes,we can view the machine as simply a set of caipgrprocessorslargely ignor
ing its pogramming model and ganizdion. All we know at this st@ge is that commnication
between processors is expensive. The three primary algorithmic issues are:

¢ balancingthe workload and reducing the time spent waiting at synchronization events
* reducingcommunicationand
* reducing theextra workdone to determine and manage a good assignment.

Unfortunately,even the three mary algorithmic goals are at odds with one another and must be
traded of. A singular goal of minimizing comuamicaion would be sisfied by running the pr
gram on a single pcessoras long as the necessary data fit in the local merhot this would
yield the ultimate load imbalance. On the other hamehr perfect load balance could be
achievedat a tremendous commicdion and task mamgment penaltyby making each pmi-

tive opestion in the pogram a task and assigning tas&edomly And in many complexgplica-
tions load balance and coramicdion can be imprved by spending more time determining a
good assignment x&ra work). The goal of decomposition and assignment is toeze a god
compiomise between these conflicting demandstunately,success is often not so féilt in
practice,as we shall se@hroughout our discussion of periance issues, the four case studies
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from Chaepter2 will be used to illustte issues and techniqudshey will later be presented as
complete case studiesdadssing all the pesfmance issues in Secti@6. For each issyeve
will also see how it is applied to the simple equation soleeret from Chater2, resulting &
the end in a high performance version.

3.2.1 Load Balance and Synchronization Wait Time

In its simplest &rm, balancing the wrkload means ensuring thategy processor does the same
amount of vark. It extends exposing enough corremcy—whid we saw earlier—with pper
assignment and reduced serialization, and gives the following simple limit on potential speedup:

Sequential Work
maxWork on any Processo

Speedu%roblen{ p)<

Work, in this contat, should be intgireted libeally, because Wat méters is not just how man
calculdions are done but the time spent doing thehickvinvolves data accesses and caumin
cation as well.

In fact,load balancing is a little more complicated than simply equalizorg.\idot only should
different pocessas do the same amount obrk, but they should be ovking at the same time
The extreme point would be if the avk were evenly divided among processes but only one-pr
cess vere actve at a timeso there would be no speedup at 8lie real goal of load balance is to
minimize the time processes spend waiting at Byartizdion points, including an implicit ond a

the end of the mgram. This also inolves minimizing the s@lization of processes due to either
mutual eclusion (waiting to enter critical sections) or dependenties.assignment step should
ensure that reduced serialization is possible, and orchestration should ensure that it happens.

There are four parts to balancing the workload and reducing synchronization wait time:

* Identifying enough concurrency in decomposition, and overcoming Amdahl’s Law.
¢ Deciding how to manage the concurrency (statically or dynamically).

* Determining the granularity at which to exploit the concurrency.

* Reducing serialization and synchronization cost.

This section examines some techniques fohgasing examples from the four case studies and
other applications as well.

Identifying Enough Concurrency: Data and Function Parallelism

We saw in the equation solver that comenry may be found by examining the loops of a-pr
gram or by looking more ded/ at the fundamental dependencearaielizing loops usuaj
leads to similar (not neces#gridentical) opegtion sequences or functions being perfed on
elements of a Ige data sticture(s).This is calleddata parallelismand is a moreaneal form
of the parallelism that inspired data parallethitectues discussed i€hgpterl. Computing
forces on different particles in Barnes-Hut is another example.

In addition to data patlelism, gpplicaions often exhibifunction parallelismas vell: Entirely
different calculations are permed concuently on either the same or fiifent dataFunction
parallelismis often eferred to ascontrol parallelism or task patelism,though these arever-
loaded terms. Foxample,setting up an equation system for the solver in Ocegumires mag

134 DRAFT: Parallel Computer Architecture 9/10/97



Partitioning for Performance

different computations on oceaross-sectiongach using agv cross-sectionalrigls. Analyzing
dependences at theid or aray level reveals that seeral of these computations are ipeéadent
of one another and can be merfied in parallel. Pipelining is anothem of function paallel-
ism in which different sub-opettions or stges of the pipeline are permed concuently. In
encoding a sequence of videarfres,each lock of each frame passes throughesal stayes:
pre-filtering, corvolution from the time to the éiqguenyg domain, quantizéon, entiopy coding
etc There is pipeline parallelism across thesegsta(for example aelv processes could be
assigned to each g and opeate concurently), as well as data parallelism betweeanfies,
among blocks in a frame, and within an operation on a block.

Function parallelism and data parallelism are ofteilade together in an pplication,and po-
vide a hiearcty of levels of parallelism from Wich we must choose @ function paallelism
acioss gid computations and data parallelism withindgcomputations in Ocean). thogonal
levels of parallelism are found in many othephcaions as well; for @ample,applicdions tha
route wires in VLSI circuits exhibit parallelism across the wires t@bged,across the ggnents
within a wire, and across the many routes evaluated for each segment (see Figure 3-1).

Wy W, W3
Wire
Parallelism

Wire W, expands to segments

S21 S22 S23 o\§24 S5 S26 s t
egmen
./ ‘\‘ / Pa?allelism

Segment $expands to routes

[ A= 4

Figure 3-1The three axes of parallelism in a VLSI wire routing application.

The dgree of aailalde function parallelism is usually modest and does nat gnuch with the

size of the poblem being soled The dgree of data paltlelism, on the other handisualy
grows with data set sie. Function parallelism is also often morefidifilt to exploit in a load bal-
anced way, since diferent functions iwolve different amounts of ark. Most parallel ppgrams
tha run on lage-scale machines are data parallel according to our loose definition ofrthe ter
and function parallelism is used mainly to reduce the amount of globdlreyizaion required
between data parallel computations (as illustrated in Ocean, in Section 3.6.1).

By identifying the diferent types of concueeng in an gplicaion we often find mch more than
we needThe next step in decomposition is @stict the aailade concureng/ by detemining
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the ganulaity of tasks. Havever,the choice of task size also depends on how we expect to man-
age the concurrency, so we discuss this next.

Determining How to Manage Concurrency: Static versus Dynamic Assignment

A key issue in exploiting concreng is whether a good load balance can be obtainedshatia

or predetemined assignment, introduced in theyious dapter,or whether more yhamic
means areaquired A static assignment is typically an alghmic mapping of tasks to pcesses,

as in the simple equation solveznel discussed in the @fious capter Exactly which tasks
(grid points or ows) are assigned tohich processes may depend on theblgm siz, the um-

ber of ppocessesand other pametersput the assignment does not adapt at runtime to other
envionmental considations. Since the assignment issgeterminedstatic techniques do not
incur much task mangement eerhead atuntime However,to adieve good load balance the
require that the wrk in each task bpredictale enough, or that there be so many tasks that the
staistics of lage rumbes ensure a balanced dibtrtion, with pseudo-random assignment. In
addition to the pogram itself it is also important that other environmental conditions such as
interference from other applications not perturb the relationships among processors limiting the
robustness of static load balancing.

Dynamic techniques adapt to load imbalances at runtime. They come in two fosemsi{static
techniques the assignment for a phase of computation is determined algorithmically before that
phase, but assignments are recomputed periodically to restore load balance based on profiles of
the actual workload distribution gathered at runtime. That is, we profile (measure) the work that
each task does in one phase, and use that as an estimate of the work associated with it in the next
phase. This repartitioning technique is used to assign stars to processes in Barnes-Hut
(Section3.6.2, by recomputing the assignment between time-steps of the galaxy’s evolution.
The galaxy evolves slowly, so the workload distribution among stars does not change much
between successive time-steps. Fig+#a) illustrates the advantage of semi-static partitioning

[—@—oOrigin_semi-static —8—Origin with stealing
| === Challenge semi-static| =P —Challenge with stealing|
T o

-~ Challenge, no stealing

Figure 3-2lllustration of the performance impact of dynamic partitioning for load balance.

The gaph on the left shows the speedups of the Barneslicaion with and without semi-static géioning, and the caph on the
right shows the speedups ofyRace with and without task stealing. Even in thggaelieaions that hee a lot of paallelism, dynamic
partitioning is important for improving load balance over static partitioning.
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over a static assignment of particles to processors, for a 512K particle execution measured on tt
Origin2000. It is clear that the performance difference grows with the number of processors used.

The second dynamic tegique,dynamic taskingis used to handle the cases where either the
work distribution or the system environment is too unpredictable even to periodically recompute
a load balanced assignménEor example, in Raytrace the work associated with each ray is
impossible to predict, and even if the rendering is repeated from different viewpoints the change
in viewpoints may not be gradual. The dynamic tasking approach divides the computation into
tasks and maintains a pool of available tasks. Each process repeatedly takes a task from the pc
and executes it—possibly inserting new tasks into the pool—until there are no tasks left. Of
course, the management of the task pool must preserve the dependences among tasks, for exe
ple by inserting a task only when it is ready for execution. Since dynamic tasking is widely used,
let us look at some specific techniques to implement the task pool. Bi@(bg illustrates the
advantage of dynamic tasking over a static assignment of rays to processors in the Raytrac
application, for the balls data set measured on the Origin2000.

A simple example of dynamic tasking in a shared address spsel-$&hedulingf a parallel

loop. The loop counter is a shared variable accessed by all the processes that execute iterations
the loop. Processes obtain a loop iteration by incrementing the counter (atomically), execute the
iteration, and access the counter again, until no iterations remain. The task size can be increas:
by taking multiple iterations at a time, i.e., adding a larger value to the shared loop counter. In
guided self-schedulingh\iN88] processes start by taking large chunks and taper down the chunk
size as the loop progresses, hoping to reduce the number of accesses to the shared counter wi
out compromising load balance.

More general dynamic task pools are usually implemented by a collection of queues, into which
tasks are inserted and from which tasks are removed and executed by processes. This may b
single centralized queue or a set of distributed queues, typically one per process, as shown i
Figure3-3. A centralized queue is simpler, but has the disadvantage that every process accesst
the same task queue, potentially increasing communication and causing processors to contend f
queue access. Modifications to the queue (enqueuing or dequeuing tasks) nmusgtidléy
exclusive, further increasing contention and causing serialization. Unless tasks are large an
there are few queue accesses relative to computation, a centralized queue can quickly become
performance bottleneck as the number of processors increases.

With distributed queues, every process is initially assigned a set of tasks in its local queue. Thit
initial assignment may be done intelligently to reduce interprocess communication providing
more control than self-scheduling and centralized queues. A process removes and executes tas
from its local queue as far as possible. If it creates tasks it inserts them in its local queue. Whel
there are no more tasks in its local queue it queries other processes’ queues to obtain tasks frc
them, a mechanism known t&sk stealing Because task stealing implies communication and

can generate contention, several interesting issues arise in implementing stealing; for example

1. The gplicability of static or semi-static assignment depends not only on the computatiopetips of

the pogram but also on its interactions with the memory and conicaion systems and on thegglict-

ability of the execution emironment. For xample,differences in memory or commicdion stall time (due
to cache misses, ga faults or contention) can cause imbalances wbdeat synkronizaion points gen

when the wrkload is computi@onally load balanced. Static assignment may also notppeopriae for

time-shared or heterogeneous systems.
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all processes

insert tasks Ppinserts  Rinserts P,inserts  Rinserts
\ |/ b b
Q Q Q1 Q. Q3
/'\ othersn%l/>',:'____|_,-—~.~~~ | |
steal o ~
all remove tasks Py removes P, removes Bremoves Psremoves
(a) Centralized task queue (b) Distributed task queues (one per process)

Figure 3-3Implementing a dynamic task pool with a system of task queues.

how to minimize stealing, whom to steal from, how many and which tasks to steal at a time, and
so on. Stealing also introduces the important issuerofination detectionHow do we decide

when to stop searching for tasks to steal and assume that they're all done, given that tasks gener-
ate other tasks that are dynamically inserted in the queues? Simple heuristic solutions to this
problem work well in practice, although a robust solution can be quite subtle and communication
intensive [DS68,CM88]. Task queues are used in both a shared address space, where the queues
are shared data structures that are manipulated using locks, as well as with explicit message pass-
ing where the owners of queues service requests for them.

While dynamic techniquesegeraly provide good load balancing despite uegictaility or
envionmental conditions, they make task ngermaent more xpensive Dynamic tasking tde
niques also compromise the explicit contreéiowhich tasks areecuted by Wich processes,
thus potentially increasing commicaion and compromising data locality. Static techniques ar
therefoe usually peferalte when they can pride good load balancevgn both gplicaion and
environment.

Determining the Granularity of Tasks

If there are no load imbalances due to dependences among tasks (for example, if all tasks to be
executed are available at the beginning of a phase of computation) then the maximum load
imbalance possible with a task-queue strategy is equal to the granularity of the larg&st task.
granularity we mean the amount of work associated with a task, measured by the number of
instructions or—more appropriately—the execution time. The general rule for choosing a granu-
larity at which to actually exploit concurrency is that fine-grained or small tasks have the poten-
tial for better load balance (there are more tasks to divide among processes and hence more
concurrency), but they lead to higher task management overhead, more contention and more
interprocessor communication than coarse-grained or large tasks. Let us see why, first in the con-
text of dynamic task queuing where the definitions and tradeoffs are clearer.
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Task Granularity with Dynamic Task Queueing Here, a task is explicitly defined as an entry
placed on a task queue, so task granularity is the work associated with such an entry. The largt
task management (queue manipulation) overhead with small tasks is clear: At leastemith a
tralized queue, the more frequent need for queue access generally leads to greater contention
well. Finally, breaking up a task into two smaller tasks might cause the two tasks to be executet
on different processors, thus increasing communication if the subtasks access the same logical
shared data.

Task Granularity with Static Assignment. With static assignment, it is less clear what one
should call a task or a unit of concurrency. For example, in the equation solver is a task a grou|
of rows, a single row, or an individual element? We can think of a task as the largest unit of work
such that even if the assignment of tasks to processes is changed, the code that implements a t:
need not change. With static assignment, task size has a much smaller effect on task managems
overhead compared to dynamic task-queueing, since there are no queue accesses. Communi
tion and contention are affected by the assignment of tasks to processors, not their size. Th
major impact of task size is usually on load imbalance and on exploiting data locality in proces-
sor caches.

Reducing Serialization

Finally, to reduce serialization at synchronization points—whether due to mutual exclusion or
dependences among tasks—we must be careful about how we assign tasks and also how v
orchestrate synchronization and schedule tasks. For event synchronization, an example of exce
sive serialization is the use of more conservative synchronization than necessarybsuncaras
instead of point-to-point or group synchronization. Even if point-to-point synchronization is
used, it may preserve data dependences at a coarser grain than necessary; for example, a proc
waits for another to produce a whole row of a matrix when the actual dependences are at the lev
of individual matrix elements. However, finer-grained synchronization is often more complex to
program and implies the execution of more synchronization operations (say one per word rathe
than one per larger data structure), the overhead of which may turn out to be more expensive the
the savings in serialization. As usual, tradeoffs abound.

For mutual exclusion, we can reduce serialization by using separate locks for separate data item
and making the critical sections protected by locks smaller and less frequent if possible. Conside
the former technique. In a database application, we may want to lock when we update certait
fields of records that are assigned to different processes. The question is how to organize th
locking. Should we use one lock per process, one per record, or one per field? The finer the grar
ularity the lower the contention but the greater the space overhead and the less frequent the reu
of locks. An intermediate solution is to use a fixed number of locks and share them among
records using a simple hashing function from records to locks. Another way to reduce serializa-
tion is to stagger the critical sections in time, i.e. arrange the computation so multiple processe:
do not try to access the same lock at the same time.

Implementing task queues provides an interesting example of making critical sections smallet
and also less frequent. Suppose each process adds a task to the queue, then searches the queL
another task with a particular characteristic, and then remove this latter task from the queue. Th
task insertion and deletion may need to be mutually exclusive, but the searching of the queu
does not. Thus, instead of using a single critical section for the whole sequence of operations, w
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3.2.2

can break it up into two critical sections (insertion and deletion) and non-mutually-exclusive
code to search the list in between.

More generally, checking (reading) the state of a protected data structure usually does not have to
be done with mutual exclusion, only modifying the data structure does. If the common case is to
check but not have to modify, as for the tasks we search through in the task queue, we can check
without locking, and then lock and re-check (to ensure the state hasn’t changed) within the criti-
cal section only if the first check returns the appropriate condition. Also, instead of using a single
lock for the entire queue, we can use a lock per queue element so elements in different parts of
the queue can be inserted or deleted in parallel (without serialization). As with event synchroni-
zation, the correct tradeoffs in performance and programming ease depend on the costs and ben-
efits of the choices on a system.

We can extend our simple limit on speedup to reflect both load imbalance and time spent waiting
at synchronization points as follows:

Sequential Work
max Work + Synch Wait Timg

Speedu%roblem( p)<

In general,the diferent aspects of balancing themkdoad are the responsibility of sofwe:
Thete is not nuch an achitectue can do about a@gram that does not kia enough concuency
or is not load balanced. Mever,an achitectue can help in someays. Frst, it can povide efi-
cient support for load balancing techniques such as task stealing that are used widedlldby par
softwae (gplications,libraries and opeting systems)Task queues la two important arhi-
tecturl implications. kst, an access to a remote task queue is usually a probe griguelv-
ing a small amount of dataatiser and perhaps mutuakausion. The more dfciently fine-
grainedcomnunicaion andlow-overheadmutually exclusive access to data are sugpdrthe
smaller we can make our tasks and thus awpfoad balance. Secarttie achitectue can mak
it easy tonameor access the gpcally shared data that a stolen task ne€tsd, the achitecture
can povide eficient support for point-to-point syhimnization,so there is more incewmé to use
them instead of conservative barriers and hence achieve better load balance.

Reducing Inherent Communication

Load balancing by itself is conu®ally quite easy as long as thegpéication afords enough con-
currency:We can simply make tasks small and use dynamic taskémga® the most impaant
tradeof with load balance is reducing inpgocessor comomicaion. Decomposing a pblem
into multiple tasks usually means that there will be comicgion among tasks. If these tasks
are assigned to dérent pocessesye incur commnicaion among processes and henc&cps-
sors.We focus here on reducing comanicéion that isinherentto the parallel psggram—i.e one
process produces data that another needs—while stieping load balanceretaining our vies

of the machine as a set of coqgtigrg processcs. We will see in Sectio.3that in a real system
communication occurs for other reasons as well.

The impact of commmicaion is best estimated not by the absolute amount of aoriuation
but by a quantity called tr@ommunication to computation ratidhis is defined as the amount of
communicgion (in bytes,say) divided by the computation tigrar by the number of instctions
executedFor xample,a ggabyte of comnunicaion has a mch greaer impact on thexecution
time and commnicaion bandwidth equirrments of ang@plicdion if the time equired for the
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applicaion to eecute is 1 second than if it is 1 holile comnunicaion to computationatio
may be computed as a per-process number, or accumulated over all processes.

The inherent comomicaion to computationatio is primarily controlled by the assignment of
tasks to processefo reduce commmication,we should try to ensure that tasks that access the
same data or need to comnicae a lot are assigned to the same process.Xaonme,in a dda-

base pplication,commnunicaion would be reduced if queries and updates that access the same
database records are assigned to the same process.

One partitioning principle that hasovked \ery well for load balancing andommunic#ion vol-

ume in practice isomain decompositioft was initially used in da-paallel scientific computa-
tions such as Ocean, but has since been fopplitade to many other areas. If the data set on
which the gplicaion opegtes can be viged as physicaldomain—br example,the gid repre-
senting an ocean cross-section in Ocean, the space containing a galaxyeis-Hat;or the
image for gaphics or video pplicaions—then it is often the case that a point in the domain
either equites inbrmaion directly from only a smalllocalized egon around that point, or
requirslong-rang informaion but the equitements fall off with distance from the poikte

sawv an example of the latter in Barnes-Hut. For trenier,algorithms for motion estimation in
video encoding and decoding examine only areas of a scene that are close trettigoial,

and a point in the equation solveznkel needs to access only its four nearest neighbor points
directly. The goal of partitioning in these cases isit@gvery process a contiguousgon of the
domain while of course retaining load balaraed to shape the domain so that most of tbe pr
cess$ informaion requirements are siafied within its assigned partition. ASgure 3-4 shaws,

in many such cases the conmnicaion requirements for a processagv proportionall to the sie

of a patition’s boundarywhile computation gws proportionally to the size of its entire par

tion. The comnunicaion to computationatio is thus asurface area twolume gtio in three
dimensionsandpelimeter to area in two dimensions. Like load balance in data parallel computa-
tion, it can be reduced by either increasingdta set sizer(2 in the fgure) or reducing theum-

ber of processor).
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Figure 3-4The perimeter to area relationship of communication to computation in a two-dimensional domain decompo:

The example shown is for an alghm with localizd, nearest-neighbor infméion exchange like the simple equation solveerk
nel. Ewery point on the gd needs inbrméion from its four nearest neighbofEhus, the daker, internal points in processoy §%
paittition do not need E’commmate directly with any points outside the partition. Computation for procesgpisRhus pppor-

tional to the sum of a 5 points, while communication is proportional to the number of lighter, boundary points, WJ:\?S is
p
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Of cousse,the ideal shape for a domain decompositiorpidieation-dependentiepending pr
marily on theinformation requirements of and wrk associated with the points in the domaior. F
the equation solverdmel in Chagter2, we chose to partition theigd into docks of contiguous
rows. Figure 3-5 shows that partitioning theid into squae-like subgids leads to a lwerinher-
entcommunication-to-computian ratio. The impact becomegegter as the number of pees-
sors increasesetative to the gd size. We shall theefore cary forward this partitioning into
squae subgids (or simply‘subgiids”) as we continue to discuss p@rhanceAs a simple xer-
n

75 n

n
o Pg | Pg | Pwo| Pz

Figure 3-5Choosing among domain decompositions for a simple nearest-neighbor computatiegubar awo-dimensionalrig.

Since the wrk per gid point is unibrm, equally sized partitions yield good load balance. But we sti lshoices\We might pai-
tion the elements of theid into either strips of contiguousws (right) or tlock-structued partitions that are as close to squat

possilhe (left). The peimeter-to-aea (and hence comumicdion to computation)atio in the Bock decomposition case %XZpr
n/p
or 4 xnfp , while that in strip decomposition zxn %1%) . Bsncreasesblock decomposition incurs less inherent conmin
n~/p

cation for the same computation than strip decomposition.

cise,think about viha the comnanicaion to computationatio would be if we assigneaws to
processes in an interleaved or cyclic fashion insteadi(emsigned to procegssnodnprocy.

How do we find a suitde domain decomposition that is load balanced and a&igusicomnoini-
cdion low?Ther are seeral ways,depending on the hae and pedictaility of the computa-
tion:

* Statically by inspectiopas in the equation solveeikel and in OcearThis requires pedict-
ability and usually leads to regularly shaped partitions, as in Figures 3-4 and 3-5.

e Statically by analysisThe computation and commicaion characteistics may depend on
the input presented to theogram at untime,thus equiing an analysis of the input. ke
ever, the partitioning may need to be done only once after the inpugsisralbefoe the
actual computation starts—so we still consider itict®atitioning spase marix computa-
tions used in aerospace and automobileukifions is an gkample:The marix structure is
fixed, but is highlyirregular and equires sophisticatedrgph patitioning. In data miningwe
may divide the dtabase of transactions tally among pocessorsbut a balanced assign-
ment of itemsets to processesjuires some analysis since therlwassociated with dérent
itemsets is not equal. A simple static assignment of itemsets as well asHasedy inspec-
tion keeps communication low, but does not provide load balance.
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e Semi-staticallwith periodic epatitioning). This was discussed earlier fgymications like
Bames-Hut whoseharacteistics dhang with time but slaly. Domain decomposition is still
important to reduce comuamication,and we will see the pfiling-based Barnes-Hukample
in Section 3.6.2.

* Statically or semi-statically, with dynamic task stealiBgen when the computation is highl
unpredictalke and dynamic task stealing must be yskesnain decomposition may be useful
in initially assigning tasks to processesyface is anxample Here there are two domains:
the three-dimensional scene beirgderedand the two-dimensional iga plane. Since the
natual tasks areays shot through the inga plane it is much easier to mamgge domain
decomposition of that plane than of the scene it9édf.decompose the irga domain just
like the gid in the equation solvereknel (Figure 3-4), with image pixels coresponding to
grid points, and initially assigrays to the caresponding processes. Processes then stgsal r
(pixels) or goup of mys for load balancingThe initial domain decomposition is useful
because rays shot through adjacent pixels tend to access much of the same scene data.

Of course, partitioning into a contiguous subdomain per processor is wayslgpropride for
high perbrmance in all pplicaions. We shall see examples in tma factorizaion in
Exercise3.3, and in a radiosity @plication from computer gphics in Chater4. Different
phases of the sameglicaion may also call for diérent decompositionslhe ange of ted-
niques is ety large,but common principles like domain decomposition carobed For xam-
ple, even when stealing tasks for load balancing eny\xdynamic @plications,we can educe
communicéion by seathing other queues in the same ordeerng time, or by peferentially
stealing lage tasks or seeral tasks at once to reduce the number of times we toeaccess non-
local queues.

In addition to reducing comuamicaion volume, it is also important todgy comnunicdion bal-

anced among pressorspot just computation. Since coramicdion is expensivejmbalances in
communicéion can tanslde directly to imbalances inx@cution time among pcessas. Owerall,

whether tadeofs should beesohed in favor of load balance or commicaion volume deends
on the cost of comomicdion on a @gen system. Including comumicaion as an explicit peof-

mance cost refines our basic speedup limit to:

Sequential Work
SpeedupopientP) < max(Work + Syn((:]h. Wait Time¢- Comm. Cost

Wha we hae done in this xpression is gearded out comranicaion from work. Work now
means instructions executed plus local data access costs.

The amount of commnicaion in parallel pograms ¢early has important implications for cri-
tecture In fact, architects examine the needs qfpdicaions to determine et latencies and
bandvidths of comnanicaion are vorth spending xéra money for (se&xercise3.8); for exam-
ple, the bandwidth mvided by a machine can usually be increased lywihg hadware (and
hence money) at the gislem, but this is only wrthwhile if applicaions will exercise the
increased bandwidth. Asdritects,we assume that theqgrams deliered to us aregasonable
in their load balance and their comnicaion demands, and ste to make them perfm better
by providing the necessary support. Let us now examine the last of thétatgc issues that &
can resolve in partitioning itself, without much attention to the underlying architecture.
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3.2.3

3.24

Reducing the Extra Work

The discussion of domain decompositidaoee shows that when a computatioirisgular,com-
puting a good assignment that botloyides load balance and reduces camiodion can be
quite xpensive This etra work is not equird in a sequentiakecution,and is an werhead of
pamllelism. Consider thepase ma#rix example discussedave as an example of static par
tioning by analysisThe mdrix can be epresented as graph,such that each nodepresents a
row or column of the maix and an edge exists between two nddasd] if the marix entry (,j)

is nonzro. The goal in partitioning is to assign each process a set of nodes such thembiee n
of edges that cross partition boundaries is minimized and the computation is also load balanced
Many techniques ha been deeloped for this; the ones that result in a better balanceebatw
load balance and commicdion require more time to compute theagh patitioning. We shall
see another example in the Barnes-Hut case study in Section 3.6.2.

Another example ofdra work is computing data valuesdundant} rather than having one @r

cess compute them and cormmitae them to the otheywhich may be advoralle tradeof when

the cost of commmicdaion is high. Examples include all processes computing their own copy of
the same shadinglie in computegraphics gplications,or of tigonometic tables in scientift
computaions. If the redundant computation can be qgrened while the processor is otherwise
idle due to load imbalance, its cost can be hidden.

Finally, many aspects of ohestréing parallel pograms—sule as ceding processesnanaging
dynamic taskingdistibuting code and data throughout the hiae, executing synbronization
operdions and parallelism control ingttions, structuing commnunicaion gppropriatey for a
machine padking/unpa&ing data to and from comumicaion messges—invole extra work as

well. For xample,the cost of @aing processes is e causes us to ege them once up dnt

and h&e them gecute tasks until the pgram teminates rather than hee processes beeated

and teminaed as parallel sections of code are encountered by a single main thread of computa-
tion (afork-join approach,which is sometimes used with lightweight threads instead @f pr
cesses). In Data Miningve will see that substantiaktea work done to tansfom the déabase

pays off in reducing communication, synchronization, and expensive input/output activity.

We must consider theateofs between dra work, load balanceand commnicaion caefully
when making our partitioning decisiorithe achitectue can help reducexga work by making
communicgion and task mamggment more ditient, and hence reducing the need feira work.
Based only on these algorithmic issues, the speedup limit can now be refined to:

Sequential Work
max (Work + Synch Wait Time + Comm Cost + Extra Woi

Speedup,pjen(P) < (EQ3.1)

Summary

The analysis of parallel adgthms requires a baracterizdon of a nultiprocessor and aharac-
terization of the parallel algrithm. Histoically, the analysis of parallel algthms has écussed
on algorithmic aspects like pttioning, and has not takendnitectual interactions into account.
In fact,the most common model used twacacterie a nultiprocessor for algrithm analysis has
been the Brallel Random Access Memory (PRAM) model [FoW78]. In its most basio,fthe
PRAM model assumes that data accesems, fegadless of whether it is local onialves com-
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municdion. That is, comnunicdion cost is 2ro in the dove speedupx@ression Equdion 3.1),
and work is treated simply as instructions executed:

Sequential Instructions
max (Instructions + Synch Wait Time + Extra Instructic’

Speedup-PRAl\groblen{ p) < (EQ 3.2)

A natural way to think of a PRAM machine is as a sharedrass space machine irhigh all
daa access is ée The perbrmance #ctos that matter in parallel algthm analysis using the
PRAM are load balance andte work. The goal of algrithm deselopment for PRAMS is to
expose enough cona@ng/ so the wrkload may be well balancedithout needing too och
extra work.

While the PRAM model is useful in disegring the concueng availade in an algrithm, which

is the frst step in pallelization,it is dearly unrealistic for modeling pesfmance on real pal-

lel systemsThis is because commication,which it ignores,can easily dominate the cost of a
pamllel execution in modern systems. lact, analyzing algrithms while ignoring commmica-
tion can easily lead to a poor choice of decomposition and assignment, to say nothig®f or
tration. More recent models ta been deeloped to include comumicdion costs aslicit
parametes that algrithm designers can used0, CKP+93].We will retum to this issue after
we have obtained a better understanding of communication costs.

The teament of commnicédion costs in thelzowe discussion has been limited for tvemsons
when it comes to dealing with real systemisst-comnunicaion inherent to the parallel @r
gram and its partitioning is not the onlyrfn of comnunicaion that is impadiant: There may be
substantial non-inherent artifactual comnunicéion that is caused by interactions of the-pr
gram with the achitectue on which it runs.Thus,we hae not yet modeled the amount of com-
municdion generded by a parallel mgram saisfactorily. Second the “communicaion cost”
tem in the equationsbawve is not only determined by the amount of caminaion caused
whether inherent or aifactual, but also by the costs of the basic commigion opegtions in the
machinethe stucture of the commnicaion in the pogram,and how the two interact. Bothtiar
factual commanicdion and comranicaion stiucture are important pesfmance issues thatear
usually addressed in the ehestrdon step since they arechitecture-dpendent.To undestand
them,and hence open up the commicaion cost tem, we first need a deeper understanding of
some critical interactions of architectures with software.

Data Access and Communication in a Multi-Memory System

3.3.1

In our discussion of pttioning, we hae viaved a nultiprocessor as a collection of cooating
processa@. Havever, multiprocessor systems are alsalthimemory, multi-cache systems, and

the role of these components is essential toopmdnce The role is essentiakgadless of po-
gramming model, though the latter may influendetwhe specific pedrmance issues arThe

rest of the pedrmance issues for parallelqggrams hae pimarily to do with accessing data in
this multi-memory system, so it is useful for us to now take a different view of a multiprocessor.

A Multiprocessor as an Extended Memory Hierarchy

From an individual pscessos pespectivewe can view all the memory of the niée, includ-
ing the caches of othergmessorsas brming levels of an extended memory haechy The com-
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municdion architectue glues tgether the parts of the haecty that are on diérent nodes. ukt
as interactions with \els of the memory hiarcty (for example cache sizassocitvity, block
size) can cause theammser of more data betweenvids than is inhently necessary for the @r
gram in a uniprocessor system, so also interactions with the extended memarghhiean
cause more comumicaion (transer of data across the netik) in multiprocessas than is inher
ently necessary to satisfy the processes in a paratiglgm. Since comomicaion is &pensive,
it is paticularly important that we exploit data locality in the extendedanéy,both to impove
node performance and to reduce the extra communication between nodes.

Even in uniprocessor systems, agssos perbrmance depends héby on the perdrmance of

the memory hiaarchy Cache dects are so important that it br makes sense to talk about-per
formance without taking caches into accodké can look at the penfmance of a processor in
tems of the time needed to complete agvsam,which has two components: the time theqas-

sor is busy ®ecuting instructions and the time it spends waiting for data from the memory sys-
tem.

Timeprog(l) = Busy1) + DataAcces{l) (EQ 3.3)

As architects,we often namalize this brmula by dividing each term by the number of iostr
tions and measuring time itock cycles.We then hee a comenient,madine-oiented metric of
performancegycles per instruction (CPI), lich is composed of an ideal CPI plus tlverage
number of stall gcles per instruction. On a modern naprocessor gaalde of issuing éur
instructions per gcle, dependences within theqggram might limit the @erage issue ate to, sg,

2.5 instructions perycle, or an ideal CPI of 0.4. If only 1% of these instructions causetsecac
miss,and a cache miss causes the processor to stall forc&®,on arerage then these stalls
will account for an additional 0.8/cles per instructionThe processor will be busy doitigse-
ful” work only one-third of its time! Of cose,the other tw-thirds of the time is in fact useful. It
is the time spent comumicéing with memory to access data. Recognizing this data access cost,
we may elect to optimize either theogram or the machine to perim the data access mordi-ef
ciently. For ekample,we may bang how we access the data to enhance temporal tialspa
locality or we might provide a bigger cache or latency tolerance mechanisms.

An idealized view of this extended heechy would be a hiearcty of local caches connected to a
single“remote” memory at the nextvel. In reality the picture is a bit more complex. Even on
madines with centalized shared memiars, beyond the local caches is auiti-banked memoy

as well as the caches of othepgessas. With physically distibuted memdes, a part of the
main memory too is local, a er part is emote,and what is remote to one processor is local to
anotherThe diference in pogramming modelseaflects a difierence in how certain Vels of the
hierarcty are manged We take for ganted that theegistes in the processor are maea
explicitly, but by the compilelWe also take for gnted that the f§t couple of leels of cabes
are manged tansparenyl by the hadware In the shared alless space model, data vement
between the remote Vel and the local node is mageal tansparenyl as well. The messge pass-
ing model has this nvement manged eplicitly by the pogram. Rgardless of the mamgement,
levels of the hiearcty that are closer to the processoovide higherbandvidth and laver
lateny access to datse can impove data access perfnance either by impwing the achitec-
ture of the extended memory hierarchy, or by improving the locality in the program.

Exploiting locality exposes aadeof with parallelism similar to reducing comunicaion. Faral-
lelism may cause moregmessas to access andailv toward them the same ta while locality

146

DRAFT: Parallel Computer Architecture 9/10/97



Data Access and Communication in a Multi-Memory System

3.3.2

from a pocessos pespectie desires that data stay close to it. A highgrerance parallel -
gram needs to obtain perfnance out of each individualgaressor— exploiting locality in the
extended memory hierarchy—as well as being well-parallelized.

Artifactual Communication in the Extended Memory Hierarchy

Data accesses that are ndisfged in the local (on-node) portion of the extended memoramhier
chy generde comnunicaion. Inherent commmicaion can be seen as part of thide daa
mowes from one mcessorthrough the memory hiarcty in some manneto another pycessor,
regadless of whether it does this through explicit mgesaor reads and writes. Wever,the
amount of commnicdion that occurs in anxecution of the prgram is usually geaer than the
inherent inteprocess commmicaion. The additional comemicaion is an aifact of how the
program is actually implemented and how it interacts with thehinaés extended memory hier
archy. There are many sources of #nigfactual communication:

Poor allocation of dataData accessed by one node may happen to be allocated in the local
memory of another. Accesses to remote data involve communication, even if the data is not
updated by other nodes. Such transfer can be eliminated by a better assignment or better dis
tribution of data, or reduced by replicating the data when it is accessed.

Unnecessary data in a transféfore data than needed may be communicated in a transfer.
For example,a receiver may not use all the data in a meggsé may hae been easier to send
extra data conseatively than determinexactly what to send. Simildy, if data is tansfered
implicitly in units lager than a wrd, e.g. cache tocks, part of the lbck may not be used by
the requester. This artifactual communication can be eliminated with smaller transfers.

Unnecessar transfers due to system granularitiés cadie-coheent madines,data may be
kept coherent at a granularity larger than a single word, which may lead to extra communica-
tion to keep data coherent as we shall see in later chapters.

Redundant communication of daf2ata may be comumicaed multiple times, forxample,

every time the valueltangesbut only the last value may actually be used. On the other hand
data may be communicated to a process that already has the latest values, again because it
was too difficult to determine this.

Finite replication capacityThe capacity for replication on a node is finite—whether it be in
the cache or the main memory—so data that has been already communicated to a process
may be eplaced from its local memory system and hence need tatsfered ajain even if

it has not since been modified.

In contiast,inherent commnicaion is that vinich would occur with unlimited capacity foepli-
cation,transfes as small as necesgaand perfect kneledge of what logically shared data has
been updied We will understand some of the sources tifactual comranicaion better vien
we get deeper into @nitecture Let us look a little further at the last source oifactual comm-
nication—finite replication capacity—which has particularly far-reaching consequences.

Artifactual Communication and Replication: The Working Set Perspective

The elaionship between finiteeplicaion capacity and #ifactual commnicdion is quite fun-
damental in parallel systems, just like tiedtionship between cache size and memaaffitrin
uniprocessa. It is almost inppropriae to speak of the amount of comnicaion without efer-
ence to eplicaion cgacity The extended memory harcty pesspectie is useful in viewing this
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reldionship.We may view our gneic multiprocessor as a higrchy with three levels: Local
cade is ingpensie to access, local memory is morpensive and anyemote memory is och
more expensive We can think of any el as a cawe,whether it is actually magead like a had-
ware cache or by softare Then,we can then classify tHenisses”at any lgel, which generate
traffic to the next beel, just as we do for unipcesscs. A fraction of the #ffic at any leel is
cold-start resulting from the fst time data is accessed by thegassarThis component, also
called compulsorytraffic in unipocessorsis independent of cache giSuch cold start misses
are a concern in pasfming cache simlations, but diminish in importance asqgrams oun
longer Then there is &ffic due tocapacity misses, \ich dearly decrease with increases in
cade siz. A third fraction of taffic may beconflict misses, \ich are reduced byrgaer asso-
ciativity in the eplicgtion stoe, a geaer number of lncks, or chandng the data accesstrn.
These three types of misses @ffic are called the three C’s in uniprocessahaectue (cold
stat or compulsoy, cgpacity, conflict). The new &rm of traffic in multiprocessas is a burth C, a
communicatiormiss, caused by the inherent coomitaion between prcesscs or some of the
sources of aifactual commnicdion discussedtmve Like cold start misses, conumication
misses do not diminish with cacheesiEach of these components ddffic may be helped or
hurt by large granularities of data transfer depending on spatial locality.

If we were to determine thedffic resulting from each type of miss for a parall@ig@am as v
increased theeplicaion capacity (or cache &} we could expect to obtain a #arsuch as
shawn in Figure 3-6. The cure has a small number of knees or pointsftéction.These knees
correspond to thevorking setsof the algrithm relewvant to that leel of the hiearchy! For the
first-level cade, they are the wking sets of the alwithm itself; for others they depend onvho
references hae been ftered by other leels of the hiesirchy and on how the lels are marged.
We speak of this cue for a fist-level cache (assumed fully assduia with a one-wrd block
size) as the working set curve for the algorithm.

Traffic resulting from any of these types of misses may cause goitation across the
machine$ interconnection netwk, for example if the backing stge happens to be in amote
node Similaty, any type of miss may coittute to local taffic and data access coshus,we
might expect that many of the techniques used to redtitacéwal commnicdion are similar to
those used to exploit locality in ungaessorswith some additional ones. Inherent coamita-
tion misses almost whys generde actual commnicaion in the machine (though sometimes
they may not if the data needed happens teeticome local in the meahile, as we shall see),
and can only be reduced bgandng the sharing ggems in the algrithm. In adlition, we ae
strongly motivated to reduce the @ractual commnicdion that arises either due tamser siz

or due to limited eplicaion cgacity,which we can do by exploiting spatial and temporal locality
in a pocesss data accesses in the extendedanébry Changing the @hestréion and assignment
can dramatically change locality characteristics, including the shape of the working set curve.

For a gven amount of commmication,its cost as seen by the processor is alfertad by ho
the comnunicaion is stuctured By stucture we mean whether megsa are lage or small, hav

1. The working set model of mrgram behavior [Den68] is based on the temporal locality exhibited by the
daa referencing p&tems of pograms. Under this model, aggram—or a process in a parallebgram—

has a set of data that it reuses substantially for a period gftiefoee moving on to other datd&he shifts
between one set of data and another maytepd or gadual. In either caséhere is at most times‘aork-

ing set” of data that a processor should ble o maintain in a fast Vel of the memory hiarchy,to use

that level effectively.
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Figure 3-6 The data @ffic between a caches@licion store) and the rest of the system, and its components as a functioec
size.

The points of inflection in the total traffic curve indicate the working sets of the program.

bursty the commanicaion is, whether comomicaion cost can beverlgpped with other compu-
tation or comnunicaion—all of which are adressed in therchestréon step—and how well the
communicéion patems mach the topolgy of the interconnection netwk, which is adliressed
in themgpping step. Reducing the amount of conmication—inheent or atifactual—is impor
tant because it reduces the demand placed on both the system aodtramper to reduce cost.
Having understood the machine as an extended@iuigr and the major issues thigises et us
see how to adtess these ahitecture-relted perbrmance issues at the nexvééin software;
that is, how to program for performance once partitioning issues are resolved.

3.4 Orchestration for Performance

We bain by discussing how we might exploit temporal and spatial locality to reduce the amount
of artifactual commanication,and then mee on to stuctuiing communication—inheent or afi-
factual—to reduce cost.

3.4.1 Reducing Artifactual Communication

In the messge passing model both conumicaion and eplicdion are &plicit, so een atifac-
tual comnunication is eplicitly coded in ppgram messges. In a shared debss spaceattifac-
tual comnunicaion is more interesting @hitecturaly since it occurs émsparenyl due to
interactions between the ggram and the machine ganizdion; in paticular, the finite cahe
size and the @anulaities at vhich data are allod¢ad,commnunicaed and kpt coherentWe thee-
fore use a shared dss space to illugtie issues in exploiting localitypoth to impove node
performance and to reduce artifactual communication.
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Example 3-1

Answer

Exploiting Temporal Locality

A program is said to exhibit temporal locality if tends to access the same mematigrioca
repeated! in a short time-fame Given a memory hiarchy, the goal in exploiting tempal
locality is to stucture an algrithm so that its wrking sets map well to the sizes of thefafiént
levels of the hiaarchy For a pogrammerthis typically meansédeping working sets small with-
out losing pedrmance for other reasondlorking sets can be reduced byweel tediniques.
One is the same technique that reduces inherent naimgion—assigning tasks that tend to
access the same data to the sanoegas—whib further illustetes the elaionship betveen
communicgion and locality. Once assignment is doag@ocesss assigned computation can be
organizd so that tasks that access the same data are scheduled close to one anothanh time
so that we reuse a set of data aghmas possible befe moving on to other da, rather than
moving on and coming back.

When multiple data sfictures are accessed in the same phase of a caiopyutae must decide
which are the most important candidates for exploiting temporal locality. Sincewtio#ion is
more expensie than local access, we mighefar to exploit temporal locality on nonlocalther
than local data. Consider atdaase gplicaion in which a process wants to compare all its
recods of a certain type with all theaods of other processeEhere are two choices her(i)

for each of its owmecordsthe process cameep through all other (nonlocalecods and com-
pare,and (ii) for each nonlocakcord,the process cawee through its owneacods and com-
pare The latter exploits temporal locality on nonlocatajand is thezfore likely to yield better
overall performance.

To wha extent is temporal locality exploited in the equation sohemneéd. Hov
might the temporal locality be increased?

The equatiorsolver kemel travesses only a single data stture A typical gid
element in the interior of a pcesss partition is accessed at leaseftimes by thia
process during eactweep:at least once to compute its own nealue,and once
ead to compute the new values of its four nearest neighbors. If a procesgss
through its partition of thergd in row-major order (i.e.ow by row and left to ight
within each ow, seeFigure 3-7(a)) thenreuse ofA[i,j] is guaranteed across the
updaes of the three elements in the same that touch it:Afi,j-1], A[i,j] and
Ali,j+1] . However, between the times that the new valuesApjj] andA[i+1,j]
are computedthree whole sulmvs of elements in that pcesss partition ae
accessed by that process. If the threemubidon't fit tayether in the caee, then
Ali,jl will no longer be in the cache when it is accesgmihato computé\[i+1,]] .
If the backing store for these data in the cache is nonloctfactual
communicéion will result. The poblem can be fied by dandng the order in
which elements are computeds shown irFigure 3-7(b). Essentiall, a pocess
proceeds left-to-right not for the length of a whole subof its patition, but ony
a certain lengthB, before it moves on to the coesponding portion of the xe
subrow It performs its svee in sub-svegs over B-by-B blocks of its partitionThe
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(a) Unblocked access pattern in a sweep (b) Blocked access pattern with B=4

Figure 3-7Blocking to exploit temporal locality in the equation solver kernel.

The figures show the accesstfgans for a processavesing its partition during avgeep,with the arow-headed lines showing tl

order in vhich
rows of shade

id points are upded Updating the sulow of bold elementsequires accessing that salr as well as the two sul
elements. Updating thistfelement of the next (shaded) smbrequires accessing thest element of the bold su

row again, but these three whole subrows have been accessed since the last time that first bold element was accessed.

block sizeB is chosen so that at least thigéength ows of a partition fit in the
cache.

This technique of sfictuing computation so that it accesses a subset of data that fitwvéi afle
the hiearchy,uses those data asich as possile, and then mees on to the next such set ofala
is calledblocking In the particular examplébave,the reduction in missate due to locking is
only a small constant factor (about a factor of tildje reduction is only seen when a smbof

a piocesss partition of a gd itself does not fit in the che, so Hocking is not alvays useful.
However,blocking is used &1y often in linear algbta computations like ntidx multiplication or
matiix factorizationwhere O(nk+1) computation is peoimed on a data set of si@{nk), so eah
daa item is accessdd(n) times. Using tocking effectively with B-by-B blocks in these cases
can reduce the misste by a factor oB, as we shall see iBxercise3.5, which is paticularly
important since rach of the data accessed is nonlocal. Nopssingly, many of the same types
of restructuing are used to impre temporal locality in a sequentiabgram as well; for gam-
ple, blocking is critical for high pedrmance in sequential ivex computationsTechniques ér
tempoael locality can be used at anyét of the hiearcly where data areaplicated—including
main memory—and for both explicit or implicit replication.

Since temporal locality &dcts eplication,the locality and eferencing piems of gplications
hawe important implications for determininghieh programming model and commication
abstaction a system should suppdfte shall etum to this issue in Sectidh7. The sizes and
scaling of vorking sets hee obvious implications for the amounts eplicaion capacity needed
at different levels of the memory hiarchy,and the number ofVels that make sense in this hier
archy In a shared attess spacetogether with their compositions (whether they hold local or
remote data or both),mking set sizes also help determine whether it is usefeicete com-
municded data in main memory as well or simpdjyron caties,and if so how this should be
done In messge passingthey help us determineha data to eplicae and how to mame the
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replicaion so as not to fill memory witleplicaed data. Of course it is not only themking sets
of individual gplications that m#er, but those of the entireaskloads and the opating system
tha run on the maune For hadware cates,the size of cache needed to hold @rking set
depends on its organization (associativity and block size) as well.

Exploiting Spatial Locality

A level of the extended memory higcty exchangs data with the nextiel at a certailgranu-
larity or transkr siz. This ganulaity may be fked (for «éample,a cache lock or a pge of
main memory) or @xible (for example, explicit usefrcontrolled messges or usedefined
objects). It usually becomes dr as we go furthemay from the pocessorsince the lgency
and fiked statup overhead of each anser becomes rgaer and should bamortizd over a
larger amount of datalo exploit a lage granularity of communication or data transfexe
should oganiz our code and data sttures to exploit spatial localifyNot doing so can lead to
artifactual commnicdion if the tanskr is to or from a remote node and is implicit (at some
fixed ganularity),or to more costly comomicaion even if the tanskr is explicit (since either
smaller mesgges may hee to be sent or the data maywédo be made contiguous bef they
are sent). As in unimrcessorspoor spatial locality can also lead to a higbgfreng of TLB
misses.

In a shared altess spagen addition to the ganulaity of comrnrunication,artifactual commni-
cdion can also beaneraed by mismtches of spatial locality with two other importamagular-
ities. One is thgranulaiity of allocation which is the ganulaity at which data are allocated in
the local memory orplicaion store (gg. a paye in main memay, or a cachelbck in the cabe).
Given a set of data sirturesthis determines thergnulaity at which the data can be didiuted
among physical main memories; that is, we cannot allocate a part gé apane node’s mem-
ory and another part of the ggin another node’s memor-or exkample,if two words that ae
mostly accessed by two digrent pocessas fall on the same ge,then unless data areplicated
in multiple main memories that ga may be allocated in only oneopessos local memoy;
cgpacity or conflict cache misses to thaird/by the other processor wilegerae comnunica-
tion. The other importantrgnulaity is the granularity of coheence which we will discuss in
Chapter5. We will see that uralated words that happen to fall on the same unit of coherence in a
coherent shared address space can also cause artifactual communication.

The techniques used for all these aspects of spatial locality in a shdreslsegpacare similar
to those used on a ungmessorwith one new aspedive should try tckkeep the data accessey b
a gven processor closedether (contiguous) in the dabss spageand unelaed data accessed
by different pocessas gait. Spatial locality issues in a sharediexbs space are besenined
in the context of particular ehitectual styles, and we shall do so in @kas 5 and8. Here, for
illustration, we look at onexample:how data may beestructued to interact better with the
granularity of allocation in the equation solver kernel.

1. The principle ofspdial locality states that if aigen memory location iseferenced nw, then it is lilely
tha memory locations close to it will beferenced in the near futeitt should be clear thathet is called
spdial locality at the ganulaity of individual words can also be vieed as temporal locality at theagular-
ity of cache bocks; that is, if a cacheldxck is accessed mg then it (another datum on it) is ély to be
accessed in the near future.
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Example 3-2

Answer

Consider a shared dess space system inhigh main memory is prsically

distributed among the nodes, and imieh the ganularity of allocdion in main

memoy is a pge (4 KB say). Now consider therig used in the equation seiv
kemel.What is the poblem ceaed by the ganulaity of allocaion, and how might
it be addressed?

The naural data swcture with which to epresent a two-dimensionakid in a
shaed adiress spaceas in a sequential @gram,is atwo-dimensional aay. In a
typical piogramming languge, a two-dimensional aay data stucture is allocéed
in either a‘row-major” or “column-major”way. The gay arows in Figure 3-8(a)
shav the contiguity of virtual adresses in aow-major allocéion, which is the one
we assumeWhile atwo-dimensional sharedray has the psggramming astantage

Contiguity in memory layout
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(a) Two-dimensional array (a) Four-dimensional array

Figure 3-8 Two-dimensional and Four-dimensional arrays used to represent a two-dimensional grid in a shared address

of being the same data wtture used in a sequentialggram,it interacts pody

1. Consider the aay as being a two-dimensionalid, with the frst dimension specifying thew number

in the gid and the second dimension the colunmmber Row-major allocation means that all elements in
the frst row are contiguous in the virtual detss spacdollowed by all the elements in the secoodretc
The C pogramming languge,which we assume heyis a ow-major languge (FOR'RAN, for example,is
column-major).
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with the ganulaity of allocation on a machine with péically distibuted memoy
(and with other granularities as well, as we shall see in Chapter 5).

Consider the partition of procesd®b in Figure 3-8(a). An important wrking set
for the processor is its entire ptéon, which it streams through irvery swee and
reuses acrossnvees. If its partition does not fit in its local cache hrehy, we
would like it to be allocated in local memory so that the misses cantibfiesia
locally. The poblem is that consecwi subows of this partition are not contiguous
with one another in the ddbss spagebut are sparaed by the length of an erdir
row of the gid (which contains sulmvs of other partitions)This makes it
impossilke to distibute data ppropriatey across main memories if a sabrof a
patition is either smaller than a @&, or not a multiple of the g siz, or not vell
aligned to pge boundaries. Subws from two (or more) adjacent partitions will
fall on the same g, which at best will be allocated in the local memory of one of
those pocessas. If a pocessos partition does not fit in its clae, or it incus
confiict misses, it may ha to comnanicae every time it accesses aid element in
its own partition that happens to be allocated nonlocally.

The solution in this case is to use a higher-dimensional & represent the te-
dimensional gd. The most commoaxampleis afour-dimensional aay, in which
case the processes armaged concptually in a two-dimensionalrig of patitions

as seen irkFigure 3-8. The frst two indices specify the partition or process being
referred to, and the last twepresent the subw and subcolumnumbes within
that partition. For gample,if the size of the entirerigl is 1024-by-1024 elements,
and there are 16 @cessors,then each partition will be a sulid) of siz

1024_ by—% or 256-by-256 elements. In theui-dimensional epresentation,

J16

the aray will be of size 4-ly-4-by-256-ly-256 elementsThe ley propety of these
higherdimensional epresenti#ons is that each pcessos 256-by-256 element
patition is now contiguous in the drkss space (see the contiguity in theual
memoy layout inFigure 3-8(b)). Thedaa distibution pioblem can now occur oyl
at the end points of entire g#ions, rather than of each sulaw, and does not occur
at all if the data strcture is aligned to a g bounday. However,it is substantiajl
more complicated to write code using the higher-dimensiorralysypaticularly
for array indexing of neighboring pcesss partitions in the case of the nestr
neighbor computation.

More complex pplicaions and data sictures illustete more significant &deofs in data stuic-
ture design for spatial locality, as we shall see in later chapters.

The spatial locality in mrcessesaccess pgerns,and how they scale with thegtifem size and
number of pocessorsaffects the desatle sizes for arious ganulaities in a shared abless
spaceallocaion, transer and cohance It also afects the importance of @riding support tai-
lored tavard small \ersus lage messges in messge passing systema&mortizing hadware and
transer cost pushes usward lage ganularities,but too lage ganulaities can cause penf
mance poblems,many of them specific to umtiprocesscs. Fnally, since conflict misses can
generge atifactual commnicaion when the backing store is nonlocaljltiprocessas push us
toward higher associavity for cachesThere are many cost, perfmance and mgrammability
tradeofs concerning support for data locality iruttiprocesss—as we shall see in subsequent
chapters—and our choices are best guided by the behavior of applications.
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Finally, there are often interestingtteofs among algrithmic goals such as minimizing inher
ent comnunication,implementation issues, andhitectuel interactions thatenerae atifactual

communicationsuggesting that carefub@minaion of tradeofs is needed to obtain the best-per

formance on a given architecture. Let us illustrate using the equation solver kernel.
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—8—2D

—=4D
——4D-r1
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2D-rr

Processors Processors

(a) Ocean with 514-by-514 grids (b) Equation solver kernel with 12K-by-12K grid

Figure 3-9The impact of data structuring and spatial data locality on performance.

All measurements are on the SGIligim2000. 2D and 4D imply two- anddirdimensional data sictures,respectivelywith sub-
block assignment. Rows uses the two-dimensionalarith strip assignment into chunks @iws. In the right caph,the postfix r
means that mes of data are digiuted ound-obin among physical memorié&/ithout rr, it means that fges are placed in the loc
memoy of the processor tolich their data is assigngeds far as posdia We see from (a) that thewwise strip assignment outpe
forms the 2D strip assignment due to spatial locality interactions with long dacke {128 bytes on the @in2000),and &en a lit-
tle better than the 4D @y block assignment due to poor spatial locality in the latter in accessing border elements at coted:
patition boundariesThe right gaph shows that in all partitioning schemes proper dataliisibn in main memory is important -
performancethough least successful for the 2begrsutblock partitions. In the best casge see superlinear spee uEs once ther
enough processors that the size of a processor’s partition of the grid (its important working set) fits into its cache.

Example 3-3 Given the pedrmance issues discussed ag $hould we choose to partition the
equation solver kernel into square-like blocks or into contiguous strips of rows?

Answer If we only consider inherent comunication,we allead/ know that eblock domain
decomposition is better than partitioning into contiguous stripsoak r(see
Figure 3-5 on pge 142). However,a stiip decomposition has the ahtag that it
keeps a partition Wolly contiguous in the afiless spaceven with the simpleitwo-
dimensional a\y representidon. Henceit does not siiér poblems elaed to the
interactions of spatial locality with machineagularities such as thergnulaity of
allocdion as discussedbave This particular interaction in thddek case can of
course be solved by using a higher-dimensionedyarepresention. Hovever, a
more difficult interaction to solve is with theanulaity of commnunicaion. In a
subblo& assignment, consider a neighbor element from another partition at a
column-oiented partition boundgr If the ganulaity of comnunicdion is lage,
then when a procesgferences this element from its neighbor’s partition it will
fetch not only that element but also a number of other elements that are on the same
unit of communicaion. These other elements are not neighbors of ¢tehing
processs patition, regadless of whether a two-dimensional ouf-dimensional
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represention is usedso they are useless and waste comiggion bandvidth (see
Figure 3-10). With a partitioning into strips ofows, a referenced element still

Good spatial locality on
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Figure 3-10Spatial locality in accesses to nonlocal data in the equation solver kernel.

The shaded points are the nonlocal points that the processor owning the partition aticedstEhed rectangles are cachedks,
showing good spatial locality along the row boundary but poor along the column.

causes other elements from itg/rto be £tchedbut now these elements are indeed
neighbos of the &tching processs partition.They are useful, and in fact the dgr
granulaity of commnunicaion results in a&luable prefetching efect. Oerall, there

are many combinations ofpalicaion and machine pametes for which the
perfomance losses inldck partitioning owing to difactual comranicaion will
dominde the perdrmance benefits from reduced inherent camitation,so that a
stiip partitioning will perbrm better than albck partitioning on a real systemle
might imagine that it should most often perfn better when a tetrdimensional
array is used in thelbck case but it may also do so in some cases wheoua- f
dimensional amy is used (there is not me&ion to use adurdimensional aay
with a strip partitioning)Thus,attifactual comranicaion may cause us to go lkac
and evise our partitioning method fromdek to strip.Figure 3-%(a) illustrates this
effect for the Oceaapplication,andFigure 3-9(b) uses the equation solvesrkel
with a lager gid size to also illusate the impact of data placement. Note that a
strip decomposition into columnsather than ows will yield the worst of both
worlds when data are laid out in memory in row-major order.

3.4.2 Structuring Communication to Reduce Cost

Whether commanicaion is inherent or aifactual, how nuch a gven comnunication-to-compu-
tation ratio contiibutes to gecution time is determined by how the coumitdion is oganized
or stuctured into mesgges. A small commnication-to-comput#on ratio may hae a nuch

greder impact on xecution time than a Ige ratio if the stucture of the latter interactsunh bet-

ter with the systemThis is an important issue in obtaining good permlance from aaal

machine,and is the last major perfnance issue wexamine Let us bgin by seeing et the

structure of communication means.
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In Chapter1, we introduced a model for the cost of coumitaion as seen by a processoreg
a frequeng of program initiated commnicaion opegtions or mesgges (initiated explicit mes-
sages or loads and stores). Combining equations 1.5 and 1.6, that model for the cost C is:

_ O Length .
C = freqx DOverheaaL Delay __Bandwidth+ Contention- OverIaE
or
_ n./m
C=fx %)+ |+ B +tc—overla[% (EQ 3.4)
where

fis the frequency of communication messages in the program.
N is the total amount of data communicated by the program.
m is the number of message, somis the average length of a message.

o is the combined overhead of handling the initiation and reception of a message at the send
ing and receiving processors, assuming no contention with other activities.

| is the delay for the first bit of the message to reach the destination processor or memory,
which includes the delay through the assists and network interfaces as well as the network
latency or transit latency in the network fabric itself (a more detailed model might separate
the two out). It assumes no contention.

B is the point-to-point bandwidth of communication afforded for the transfer by the commu-
nication pah, excluding the processowerhead; i.e. theate at which the rest of the mesga

dda arives at the destination after thesfibit, assuming no contention. It is thedrse of the
ovenrll occupancy discussed@hater 1. It may be limited by the netwk links, the netwrk
interface or the communication assist.

t is the time induced by contention for resources with other activities.

overlapis the amount of the comunicaion cost that can beverlgpped with computation or
other communication, i.e that is not in the critical path of a processor’s execution.

This expression for commnicaion cost can be substituted into the speedup equationweé de
oped earlierEqudion 3.1 on pge 144),to yield our final gpression for speeduphe portion of

the cost gpression inside the parentheses is our cost model for a single datayomessge. It
assumes thécut-through” or pipelined ather thanstore-and-forwat transmission of moder
multiprocessor netarks. If messges are aund-trip,we must make theparopride adjustments.

in addition to reducing comamicéion volume(ng) our goals in strctuing comnunicéion may

include (i) reducing comuomicdion overhead i*o0), (ii) reducing laeng/ (m*l), (iii) reducing
contention h*t;), and (iv) aerlgpping comnunicaion with computation or other comumica-

tion to hide its latency. Let us discuss programming techniques for addressing each of the issue:

Reducing Overhead

Since the gerhead associated with initiating or processing a mgssa usually fted by had-
ware or system softare,the way to reduce comomicaion overhead is to make megges Ewer
in number and hence ar,i.e. to reducéhe messge frequencj'/ Explicitly initiated comnoini-
caion allows geaer flexibility in specifying the sizes of mesges; see th&END primitive
descibed in Sectior2.4.6in the pevious dapter On the other handmplicit commnunication
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through loads and stores does ndbiaf the pogram direct contl, and the system must &k
responsibility for coalescing the loads and stores into larger messages if necessary.

Making messges lager is easy in@plicaions that hae regular data access andmmunication
pattens. For &ample,in the messge passing equation solver example partitioned ioues me
sent an entireav of data in a single megga But it can be dffcult in gplicaions that hae
irregular andunpredictale comnunicaion pdterns,such as Barnes-Hut or Reace As we shall
see in SectioB.7,it may equire dangs to the parallel atgithm, andextra work to detemine
which data to coalesceesulting in @radeof between the cost of this computation and the sa
ings in overhead Some computation may be needed to determhma elata should be sent, and
the data may he to begatheed andpacled into a mesgg at the sender anshpacled andscat-
tered into appropriate memory locations at the receiver.

Reducing Delay

Delay through the assist and netik interface can be reduced by optimizing those components.
Consider the netark transit delay or the delay through the natwitself. In the absence of con-
tention and with our pipelined netvk assumption, the transit delayf a bit through the net-
work itself can be xpressed ak*t,,, wher h is the number dfhops” between adjacent netwk
nodes that the meggatraversesty, is the delay or keng for a single bit of data todvese a sin-

gle netvork hop, including the link and the router evigh. Like o above,t;, is determined by the
systemand the psgram must focus on reducing theandh components of th&h* t|, delay cost.

(In store-and-forwat networks, t, would be the time for the entire megsao taveise a hop, not
just a single hit.)

The number of hopls can be reduced byiappingprocesses to pcessas so that théopology of
interprocess comnmicdion in the aplicaion exploits locality in the physical topay of the
netwok. How well this can be done iregeal depends onpplicaion and on the sticture and
richness of the netwk topolagy; for example,the nearest-neighbor equation solvemk! (and
the Ocean @plicaion) would map ery well onto a mesh-connectedittiprocessor but not onto

a unidirectional ring topolgpy. Our other examplepplicaions are more iegular in their com-
municdion patems.We shall see seral different topolgies used in real machines and discuss
their tradeoffs in Chapter 10.

There has been a lot oksearb in mapping algrithms to netwrk topolagies, since it vas
thought that as the number obpessos p became laje poor mappings would cause thiefey
due to theh*t;, term to dominate the cost of megea. How importantopology actually is in
practice depends onsmal factors:(i) how laige thet;, tem is relative to theoverheadd of get-
ting a messge into and out of the netwk, (ii) the number of processing nodes on the s,
which determines the maximum number of hbp®r a gven topolgy, and (iii) whether the
macdine is used to run a singl@m@icaion at a time in‘batch” mode or ismultiprogrammed
among aplicaions. It turns out that netwk topolagy is not considered as important on maoder
macdines as it once as,because of theharacteistics of the machines along all threes>over-
head dominates hoptémg/ (especially in machines that do nobyide hadware support for a
shaed adiress space), the number of nodes is usually egtlarge, and the machines are often

1. Some explicit mesga passing systemsagwide different types of mesgas with diferent costs and
functionalities among which a program can choose.
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used as gneral-purposenultiprogrammed serers. Topology-ofented design might not bery
useful in nultiprogrammed systems, since the @pigig system controlsesouce allocéion
dynamicaly and might tansparenyl chang the mapping of processes togasscs at untime.

For these easonsthe mapping step of mallelization receives considebly less attention than
decompositionassignment and dhestrdon. Havever, this may bang ajain as tebnology
and machine ahitectue eolve. Let us now look at contention, the third major cost issue in
communication.

Reducing Contention

The comnanicaion systems of mitiprocessos consist of manyesourcesincluding netvark

links and svitches,comnunicaion contollers, memory systems and neiwk interfaces. All of
these esouces hae a nonero occupancyor time for vhich they are occupiesewicing a gven

transaction. Another &y of saying this is that they Y@ finite bandvidth (or rate,which is the
recipocal of occupancy) for servicing transactions. ifesal messges contend for aesource,
some of them will hae to wait while others are sgced, thus increasing mesga laeng/ and

reducing the bandwidthsailabe to any single mesga Resource occupancy cabtrtes to mes-
sage cost gen when there is no contention, since the time taken to pass themagite is par

of the delay or overhead, but it can also cause contention.

Contention is a p#icularly insidious pedrmance poblem,for several reasons. iFst, it is easy to
ignore when writing a parallel pgram,patticularly if it is caused by #if actual comranication.
Second,its efect on perdrmance can be dmatic If p processas contend for aesouce of
occupang X, the frst to obtain theasouce incurs a leeng/ of x due to thatesourcewhile the
last incurs at leagi*x. In addition to lage stall times for prcessorsthese diferences in \ait
time across mcessas can also lead to Ige load imbalances and symonizdion wait times.
Thus, the contention caused by the occupancy afsauice can be mch more dangrous than
just the léeng it contibutes in uncontended cas@#he third reason is that contention for one
resouce can hold up otheesourcesthus stalling transactions that dorvee need theasource
that is the source of the contenticFhis is similar to how contention for a single-lane exit off a
multi-lane highvay causes congestion on the entiretstr of highway. The resultingcongestion
also afects cars that don't need that exit but wanteelgoing on the highay, since they ma

be stuck behind cars that do need that &ki& resulting backup of carswass up other uralated
resouces (pevious «its), making them inaccessible and ulttelg clogging up the highway.
Bad cases of contention can ddicsaturde the entire commnicaion architecture The final
reason is @lated:The cause of contention is paularly difficult to identify since the décts
might be felt at ®ery different points in the mgram than the aginal causepaticularly comnu-
nication is implicit.

Like bandvidth, contention in a netark can also be viged as being of two types: at links or
switches within the netark, called network contentionand at the end-points orqmessing
nodes calledend-point contentiarNetwork contention, like leency,can be reduced by pping
processes and scheduling the camimaion gppropriatey in the netwark topolayy. End-point
contention occurs when manyopessos need to commnicae with the same processing node a
the same time (or when commicdion transactions integfe with local memory eferences).
When this contention becomewsee,we call that processing node esouce ahot spot Let us
examine a simple example of how a hot spot maydoedéd,and how it might be alléated in
software.
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Recall the case of processes wanadoumulge their partial sums into a global sum, as in our
equdion solver lemel. The resulting contention for the global sum can be reduced bytusaig
structued comnunicaion rather than having all processes send their updates to the owning node
directly. Figure 3-11shows the stricture of such many-to-one conumicaion using ainaly fan-

in tree The nodes of thisée,which is often called a softave combining tee,are the pdicipat-

ing processes. A leaf process sends its update up to @stpahich combines its lildren’s
upddes with its own and sends the combined update up to #stpand so on till the updes

read the root (the process that holds the global suriopisp steps. A diamitaut tree can be
used to send data from one to manycessesSimilar tree-basedpproaties are used to design

contention little cont(_antion

< -- >

Flat Tree Structured

Figure 3-11Two ways of structuring many-to-one communication: flat, and tree-structured in a binary fan-in tree.

Note that the destination processor mageined up top-1 messges at a time in thed case while no processor is the destinatior
more than two messages in the binary tree.

scalalle syndironizaion piimitives like locks and beers that often xpetience a lot of conten-
tion, as we will see in latethaptersas well as libary routines for other comumicaion patems.

In generaltwo principles for alleiating contention are tovaid having too many processes com-
municde with the same process at the same,tand to stgger messges to the same desttien

so as not towerwhelm the destination or thesouces along the ay. Contention is often caused
when comranicaion is kursty (i.e. the psgram spends some time not coommitaing much and
then sudenl goes through ausst of comnunication),and stggeing reduces trstiness. Hav-
ever, this must beraded off with making mesgas lage, which tends to increaseutstiness.
Finally, having discussedverhead]atency,and contention, let us look at the last of the camm
nication cost issues.

Overlapping Communication with Computation or Other Communication

Despite dbrts to reduce werhead and dejathe tetinology trends discussed i@haterl sug-
gest that the end-to-end themmunic#éion cost as seen by a processor ishiko remain ery
large in processongles.Alreadyi, it is in the hundreds of processgcles ezen on machines tha
provide full hadware support for a shared drdss space and use high-speed aodtsyand is &
least an order of magnitude higher onreat messge passing machines due to the higharo
head terno. If the processor are to remain idle (stalled) while inaing this cost for eery word
of data comranicated,only programs with an @remely low ratio of comnunicaion to compu-
tation would yield efiective parallel pedrmance Programs that comomicae a lot must ther
fore find ways to hide the cost of commicaion from the pocesss critical path by werlapping
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3.5

it with computation or other conmumicaion as nuch as possile, and systems mustgiide the
necessary support.

Tedhnigues to hide comumicaion cost come in diérent,often complementarydVors,and we
shall spend a wholehepter on them. Onepproad is simply to make mesgaes lager, thus
incuriing the ldeng/ of the fist word but hiding that of subsequenbris through pipelined
transkr of the lage messge Another,which we can calprecommunicationis to initiate the
communicgéion much bebre the data are actually neegdsd that by the time the data are needed
they are likely to have alead; arived. A third is to perbrm the comranicaion wher it ndurally
belongs in the mgram,but hide its cost by finding something else for the processor tmuo fr
later in the same process (computation or other conicetion) while the commanicaion is in
progress. A burth, called nultithreading is to witch to a diferent thread or process when one
encountes a commnicaion event.While the specific techniqgues and mechanisms depend on the
communicéion ébstraction and thegproad taken, they all fundamentallyequire the pogram

to have extra concureng (also callecslacknessbeyond the number of pcessas usedso tha
independent work can be found to overlap with the communication.

Much of the focus in parallel enitectue has in fact been on reducing coamitaion cost as
seen by the j@cessorreducing commnicaion overhead and tancy,increasing bansidth, and
providing mechanisms to all@te contention andwerlgp comnunicaion with computation or
other commnicaion. Many of the laterttaptes will therefore devote a lot of attention to wer-
ing these issues—including the design of node to arktimterfaces and comummicaion proto-
cols and conuillers that minimize both softavre and hatware overhead Chater7, 8 and9), the
design of netwrk topolagies, primitive opegtions and routing satedes that are well-suited to
the comnainicaion patems of gplicaions Chater10), and the design of mechanisms to hide
communicéion cost from the processoCligter1ll). The achitectual methods are usugll
expensiveso it is important that they can be usdeatfvely by real pograms and that their per
formance benefits justify their costs.

Performance Factors from the Processors’ Perspective

To understand the impact of fdifent perbrmance &ctoss in a parallel grgram,it is useful to
look from an individual pcessos viewpoint at the diérent components of time speneeut-
ing the pogram; i.e. how mch time the processor spends infel€nt activities as it>ecutes
instructions and accesses data in the extended memoaydhigThese diferent components of
time can beelaed quite diectly to the softvare perbrmance issues studied in thisapter,help-
ing us elae softvare techniques to hdware perbrmance This view also helps us undtand
what a parallel gecution looks like as aavkload presented to thechitecture and will be use-
ful when we discuss workload-driven architectural evaluation in the next chapter.

In Equaion 3.3,we described the time spemnkeuting a sequential @gram on a uniprocessor as
the sum of the time actualliecuting instructionsbusy and the time stalled on the memor
system @ata-loca), where the latter is &non-ideal” factor that reduces perimance Figure 3-
12(a) shows a mfile of a hypothetical sequentialggram. In this caseabout 80% of thexecu-
tion time is spent perfming instuctions,which can be reduced only by ingwing the al@rithm

or the pocessarThe other 20% is spent stalled on the memory systdnchvean be impmpved
by improving locality or the memory system.
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In multiprocessos we can take a similar viethough there are more such non-ideatdss. This
view cuts across pgramming models: forxample,being stalled waiting for seceive to com-
plete is eally very much like being stalled waiting for a remote read to complete or ehsynie
zdion event to occur. If the sameqgram is paallelized and run on aofir-plocessor matne,
the execution time pofile of the four pocessas might look like that ifrigure 3-12b). The figure

Time

100— 100—
o
£
75— = 751
il a % % % %
1 1 “ N H
PO P1 P2 P3
(a) Sequential (b) Parallel with four processors

o Data-local
I synchronization

KKK  Data-remote

I Busy-overhead

I Busy-useful

Figure 3-12Components of execution time from the perspective of an individual processor.

assumes a global symonizaion point at the end of the ggram,so that all processes teinate
at the same time. Note that thamllel execution time (55 sec) igegter than onedurth of the

sequential xecution time (100 sec); that is, wevhaobtained a speedup of on%%o or 1.8

instead of thedur-fold speedup for hich we may hae hopedWhy this is the caseand vhat
specift software or ppgramming &ctos contibute to it can be determined by examining the
components of parallekecution time from the pspectie of an individual prcessarThese ag:

Busy-usefulthis is the time that the processor spends executing instructions that would have
been &ecuted in the sequentialggram as well. Assuming @eteministic parallel pogranjr

tha is deived diectly from the sequential abgithm, the sum of the busy-useful times for all
processors is equal to the busy-useful time for the sequential execution. (This is true at least
for processas that @ecute a single instruction perate; atributing g/cles of execution time

to busy-useful or other categories is more complex when processors issue multiple instruc-
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tions per cycle, since different cycles may execute different numbers of instructions and a
given stall cycle may be attributable to different causes. We will discuss this further in
Chapter 11 when we present execution time breakdowns for superscalar processors.)

Busy-overheadhe time that the processor spends executing instructions that are not needed
in the sequential program, but only in the parallel program. This corresponds directly to the
extra work done in the parallel program.

Data-local the time the processor is stalled waiting for a data reference it issued to be satis-
fied by the memory system on its own processing node; that is, waiting for a reference that

does not require communication with other nodes.

Data-remotethe time it is stalled waiting for data to be communicated to or from another
(remote) processing node, whether due to inherent or artifactual communication. This repre-
sents the cost of communication as seen by the processor.

Synchronizationthe time it spends waiting for another process to signal thereacerof an
event that will allow it to proceed. This includes the load imbalance and serialization in the

program, as well as the time spent actually executing synchronization operations and access

ing syndronizdion variabdes.While it is waiting, the processor could bepeated} polling a
variabe until that ariade changes value—thus)@cuting instructions—or it could be staljed
depending on how synchronization is implemerited.

The synchronizationbusy-overheadnddata-remotecomponents are not found in a sequential
program running on a unipcessorand areoverheads introduced by parallelism. As weeéha
seen,while inherent commmicaion is mostly included in théata-remotecomponent, some
(usually very small) part of it might show up asta-localtime as well. Forxample,data that is
assigned to the local memory of a processor P might be updated by another procéasor Q
asynchronougl retumed to P's memory (due teplacement from Qsay) bebre P eferences it.
Finally, the data-local component is intesting,since it is a pedrmance gerhead in both the
sequential and parallel cas@ghile the other wverheads tend to increase with the number of pr
cessos for a fked poblem, this component may dexase This is because the processor is
responsike for only a portion of thewerall calculdion, so it may only access a fraction of the
daa that the sequentialggram does and thus obtain better local cache and memoryitrelia
the data-localoverhead reduces enough, it cavegrise tosuperlinearspeedupswen for deter

1. A parallel algrithm is deterministic if the result it yields for &gn input data set arenadys the same
independent of the number of processes used oethtwe timings of gents. More gnerally,we may con-
sider whether all the interedige calculations in the abgithm are deteministic. A non-deterministic algr
rithm is one in wvhich the result and thewk done by the algrithm to arive at the result depend on the
number of processes anelative ezent timing. An example is a parallel sgathrough a gaph,which stops
as soon as any path taken through tfaplyfinds a solution. Non-deterministic afijhms complicate our
simple model of were time @es,since the parallel pgram may do less usefulork than the sequential
program to arive at the anger. Such situations can lead $aperlinearspeedup, i.espeedup iggder than
the factor by wich the number of prtessos is inceasedHowever,not all orms of non-determinism ke
sud beneficial results. Deterministicggrams can also lead to superlinear speedups duedeigmemoy
system overheads in the sequential program than a in a parallel execution, as we shall see.

1. Syndironizaion introduces components of time thaedap with other ctegoies. For &ample,the time
to satisfy the pycessos first access to the symonizdion varialde for the curent syntironizaion event,or
the time spent actually commicaing the occurence of the syrfwonizaion event,may be included either
in syndronizdion time or in the eélevant data accesstegory We include it in the faer. Also, if a proces-
sor ecutes instructions to poll a symonizdion variadle while waiting for an eent to occurthat time
may be defined asusy-owerhead or as syhoonizaion. We include it in synleronizdion time since it is
essentially load imbalance.
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ministic parallel pograms.Figure 3-13 summaizes the caespondences between alelization

Parallelization Step(s) Performance Issue Processor ime Componen(t
Decomp./Assign./Orch. Load Imbalance and Synch-wait
Synchronization
Decomp./Assign. Extra Work S — Busy-overhead
Decomp./Assign. Inherent Comm. Volume \ : - Data-remote

Orch. Artifactual Comm. and Locality: "% pata-local

Orch./Mapping Communication Structure

Figure 3-13Mapping between parallelization issues and processor-centric components of execution time.

Bold lines depict directelationshipswhile dotted lines depict sidefett contibutions. On the left are shown the aléelization
step in which the issues are mostly addressed.

issuesthe steps in hich they are mostly altessedand pocessor-cenit components ofx@cu-
tion time.

Using these components, we may furttedine our model of speedup for add poblem as 6l-
lows, once gain assuming a global symonizdion at the end of thexecution (otherwise &
would take the maximumver processes in the denominator instead of taking the tiofiéepof
any single process):

+
Speedupon(P) = 3 BUSYD) * Dagcal(1) (EQ 3.5)
usyusefu(p) + Dat%cal( p) + Syncr( [) + Dataremote( p) + Busyoverhea(( p)
Our goal in adressing the pesimance issues has been &gkthe terms in the denominatomnlo
and thus minimize the parallekecution time. As we h& seen, both the ggrammer and the
architectue have their roles to pla There is little the achitectue can do to help if the pgram is
poorly load balanced or if there is an idarae amount of &ra work. However,the achitecture
can reduce the incewé for ceaing such ill-behaed parallel ppgrams by making comumica-
tion and synhkronizdion more eficient. The achitectue can also reduce theigactual comm-

nicaion incured, provide cowvenient naming so thateftible assignment mechanisms can be

easiy emplg/ed, and make it possible to hide the cost of camitaion by overlgpping it with
useful computation.

3.6 The Parallel Application Case Studies: An In-Depth Look

Having discussed the major penfnance issues for parallelggrams in a gneal contet, and
having applied them to the simple equation solvemiel,we are finally read/ to examine \wat
we really wanted to do all along in sofae:to adieve good parallel pesfmance on moresal-
istic goplicaions on real nltiprocessas. In paticular, we are nowead/ to retun to the bur
applicaion case studies that medied us to study parallel softre in the pevious dhapter,apply
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the four steps of the paltelizaion process to each case stuahd at each step digss the major
performance issues that arise in it. In theqasswe can understand and respond to thédoffs
tha arise among the dérent perbrmance issues, as well as betweengmardnce and ease of
programmingThis will not only make our understanding of parallel safenand tadeofs moe
concreteput will also help us see the types afidoad daracteistics that diferent gplications
present to a parallel emitecture Understanding theelationship between parallepplications,
softwae techniques and mkload daracteistics will be \ery important as we goofward
through the rest of the book.

Parllel gpplicaions come in &rous shapes and siz, with very different daracteistics and

very different tadeofs among the major penfmance issues. Our four case studiewige an

interesting though necesdgr very resticted cross-section through thepdication space. In
examining how to paallelize, and paticularly orchestratethem for good pedrmance we shall

focus for concreteness on a specifichdectual style: a cage-coheent shared attess space
multiprocessor with main memory physically distributed among the processing nodes.

The discussion of eactpplication is divided into four subsectionEhe first describes in mer
detail the sequential adgthms and the major data sttures usedThe second describes the par
titioning of the gplication,i.e. the decomposition of the computation and its assignmenv-to pr
cessesadiressing the algrithmic perbrmance issues of load balancemnunicaion volume
and the werhead of computing the assignmdirite third subsection is deted to ochestration:

it describes the spatial and temporal locality in tregmm,as well as the syhconizaion used
and the amount of ek done between syhoonizaion points.The fourth discusses mapping to a
netwok topolagy. Finally, for illustration we present the components ofeeution time as
obtained for a realecution (using a particular @olem size) on a particular machine of the¢
sen style: a 16-processor Silicore@hics Oigin2000.While the level of detail at viaich we teat
the case studies may appear high in some places, these details will be important in explaining th
experimental results we shall obtain in later chapters using these applications.

3.6.1 Ocean

Ocean,which sinulates curents in an ocean basiresemies many importantpplicaions in
computaional fluid dynamics. At each haontal cross-section through the ocean basieraé
different variables are modeledncluding the cuent itself and the tempature, pressure and
friction. Each wariale is discetized and epresented by aegular,uniform two-dimensional igd
of sizen+2-by-n+2 points (+2 is used instead of so that the number of intal, non-boder
points that are actually computed in the equation solvebign). In all, about tventy-five dif-
ferent grid data structures are used by the application.

The Sequential Algorithm

After the curents at each cross-section are initedizhe outermost loop of thevplication pro-
ceeds ver a lage, userdefined number of time-steps. &y time-st first sets up and then
solves partial diferential equations on theids. A time step consists of thirty threefdiént gid
computationseach inolving one or a small number ofids (variabes). Typical gid computa-
tions include adding tgether scalar multiples of af grids and storing the result in anotheidg
(e.g A =a,B+a,C-03D), performing a singleneaest-neighbor\eeragng sveep over a gid and
stoling the result in anotherrid, and solving a system of partiifferential equations on aig
using an iterative method.

9/10/97 DRAFT: Parallel Computer Architecture 165



Programming for Performance

Theiterative equatiorsolver used is thenultigrid method.This is a complex but &€ient \ariant
of the equation solvergimel we hae discussed saf In the simple sokr, each itegtion is a
swe@ over the entiren-by-n grid (ignoring the border columns analus). A nultigrid solver, on
the other handoberforms svees over a hiearchy of grids. The orginal n-by-n grid is the fnest-
resolution gid in the hiearcty; the gid at each coarsendel remowes &ery altenate gid point

in each dimension, resulting imigs of sizeg—by—g, E—by—g, and so onThe fist sweg of

the solver taveses the finestrigl, and success svegs are pedrmed on coarser or finerigs
depending on the eor computed in the prious sveep,teminaing when the systemmonverges
within a userdefined toleance To keg the computation deterministic and make it mofe ef
cient, a red-black ordering is used (see Section 2.4.2 on page 105).

Decomposition and Assignment

Ocean dbrds concureng/ at two levels within a time-stg across somerigl computéions
(function paallelism),and within a gd computation data parallelism). Little or no concuancy
is available across successi time-steps. Concrang/ across gd computations is diseered by
writing down which grids each computation reads andtes, and analyzing the gendences
among them at this vel. The resulting dependencewstture and concueng/ are depicted in
Figure 3-14 Cleaty, there is not enough coneceng/ across gd computéions—i.e not enough
vertical sections—to occupy more thaneafprocessas. We must thezfore exploit the data par
allelism within a gid computation as ®ll, and we need to decidehae combination of function
and data parallelism is best.

There are seeral reasons Wy we choose to va all processes collarae on eachgd computa-
tion, rather than divide the processes among tfelade concurent gid computations and use
both levels of parallelism; i.e. iy we concenate on data parallelism. Combined data and func-
tion parallelism would increase the size of eaatcesss partition of a gd, and henceeduce
communication-to-computian ratio. Hovever,the work associated with dérent gid computa-
tions is \ery varied and depends ongilem size in diferent ways,which complicates load bal-
anced assignment. Secomsihce seeral different computations in a time-step access the same
grid, for communicaion and data locality reasons we would not like the samdetg be pati-
tioned in diferent ways among processes inféient computationsthird, all the gid computa-
tions are fully data parallel and altig) points in a yen computation do the same amount of
work except at the baders,so we can stecally assign gd points to processes using theéadpar-
allel-only approat. Nonetheless, knowinghich gid computations are independent is useful
because it allows processes to avoid synchronizing between them.

The inherent commnicdion issues arelearly very similar to those in the simple ediom
solver,so we use albck-structureddomain decomposition of eachid) There is one complica-
tion—a tradeof between locality and load balanagdaed to the elements at the border of the
entire gid. The internah-by-n elements do similar ek and are divided equally among albpr
cesses. Complete load balancing demands that border elemieicts often do less wark, also

be divided equally among @ressas. Havever, comnunicaion and data locality sggst tha
border elements should be assigned to tloegssos that own the nearest internal elemews.
follow the latter strategy, incurring a slight load imbalance.

Finally, let us examine the witigrid equation soler. The gids at all leels of the maltigrid hier
arcty are partitioned in the saméobk-structued domain decomposition. Wever,the umber
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of grid points per processor decreases as we go to coarskr ¢ the hiesirchy At the highest
log pof thelog npossilte levels,there will be lessrid points than the processorsso some -
cessos will remainidle. Fortunately,relatively little time is spent at these load-imbalanced le
els. The itio of comnunicaion to computation also increases at higheellg since there ar
fewer points per mrcessarThis illustrates the importance of measuring speedefstive to the
best sequential abgithm (here naltigrid, for example): A classical,non-hieardical iteiative
solver on the dginal gid would likely yield betterself-relativespeedups élative to a single
processor pedrming the same computation) than theltigrid solver, but the nultigrid solver is
far moreefficient sequentially andverall. In general,less dficient sequential afgithms often
yield better self-relative “speedups”

Orchestration

Here we are mostly concerned withtifactual commnicaion and data localityand with the
orchestrdon of syndironizaion. Let us consider issueslated to spatial locality fft, then tem-
poral locality, and finally synchronization.

Spatial Locality : Within a gid computéion, the issuesalaed to spatial locality areewy similar
to those discussed for the simple equation solegrekin Sectior8.4.1,and we uséour-dimen-
sional aray data stuctures to epresent the igds. This results in gry good spatial localitypatic-
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ularly on local data. Accesses to nonlocal data (the elements at the boundaries of ingighbor
pattitions) yield good spatial locality alomgw-oriented partition boundass, and poor locality
(hence fagmenttion) along column-oiented boundariesThere are two major diérences
between the simple solver and the complete Ocealication in issueselaed to spatial locality
The frst is that because Oceawatves thity-three diferent gid computations in\ety time-
step,each irolving one or more out of @nty-five different gids, we expelience manyconflict
missesacrossgrids. While we alleiate this by ensuring that the dimensions of thrayarthat ve
allocae are nopowes of two (&en if the pogram uses peer-of-two grids), it is difficult to lay
different gids out elative to one another to minimizes conflict miséee second diérence has
to do with themultigrid solver. The fact that a jprcesss partition hasdwer gid points at higher
levels of the gd hierarcty makes it more diifcult to allocate datapgropriatey at paye granular-
ity and reduces spatial locality, despite the use of four-dimensional arrays.

Working Sets andTemporal Locality: Ocean has a complicateamking set hiearchy,with six
working sets.These fist three are due to the use of near-neighbor cotiqugaincluding the
multigrid solver, and are similar to those for the simple equation solesrek The frst is cg-
tured when the cache is ¢gr enough to hold aefv grid elements, so that an element that is
accessed as the right neighbor for another element is reused to compute itself and also as the left
neighbor for the next elemerithe second wrking set comprises a couple of solus of a po-
cesss partition When the procesgtums from one sulmv to the bginning of the next in a near
neighbor comput#on, it can reuse the elements of theviwus subow. The rest of the arking
sets are not well defined as singlerking sets, and lead to a @erwithout sharp knee3he
third constitutes a presss entirepattition of a gid used in the mitigrid solver. This could be
the partition at any lel of the nultigrid hierarchy at which the process tends to i¢e,so it is
not really a single wrking set.The fourth consists of the sum of aquesss subgids at seeral
successig levels of the gd hierarchy within which it tends to iteate (in the &treme, this
becomes all keels of the gd hierarchy). The fifth working set allows one to exploit reuse on a
grid across gd computations ongn phases; thus, it is tgr enough to hold a pcesss patition

of several grids. The last holds all the data that a process is assignedringeid, so that all these
data can be reused across times-steps.

The working sets that are most important to perfance are ther8t three ordur, depending on
how the nultigrid solver behees.The lagest among these @y linealty with the size of the da
set per pocess This gowth rate is common in scientificpplicaions that epeatedt stream
through their data sets, so withdarpioblems some importantavking sets do not fit in the local
cadtes. Note that with proper data placement tloeking sets for a process consist mostly of
local rather than commnicaed dataThe little reuse that nonlocal datdicafl is catured by the
first two working sets.

Synchronization: Ocean uses two types of syngnizaion. Hrst, global barries are used to
synchroniz all processes between computational phases (trhial lines inFigure 3-14),as
well between iteations of the mltigrid equation soler. Between seeral of the phases we could
replace the barers with finer-grained point-to-point syrronizdion at element kel to obtain
some e@erlgp across phases;\wever,the oserlap is likely to be too small to justify theverhead
of many more syriwonizdion opegtions and the mgramming complgity. Secongdlocks ae
used to povide mutual &clusion for global reductionsThe work between syrtronization
points is very large, typically proportional to the size of a processor’s partition of a grid.
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Mapping

Given the near-neighbor conumicaion patern, we would like to map processes t@@essors
sud that processes whose partitions are adjacent to each other iidthengon pocessos tha
are adjacent to each other in the natwwtopology Our subgd partitioning of tvo-dimensional

grids clearly maps very well to a two-dimensional mesh network.
OData
mSynch
BBusy

(a) Four-dimensional arrays (a) Two-dimensional arrays
The size of eachrgl is 1030-ly-1030,and the covergence tolerance is 0 The use ofdur-dimensional amys to epresent the te-
dimensional agys to epresent the two-dimensionatids dearly reduces the time spent stalled on the memory systetoding
communic&ion). This data wait time isary small because agressos partition of the gds it uses at a time fitewy comfortably in
the lage 4MB second-kel caches in this mame With smaller cabes,or much bigger gids, the time spent stalled waitingrf
(local) data would have been much larger.
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Figure 3-15Execution time breakdowns for Ocean on a 32-processor Origin2000.

In summay, Ocean is a goopresentat® of many computational fluid dynamics compiotas
n
Jp
lem with n-by-n grids andp processorsload balance is goodkespt whenn is not lage relative
to p, and theparallel eficiengy for a gven number of prcessos increases with therig size.
Since a processatreams through its portion of theidjin each gd computéion, since only a
few instructions arex@cuted per access tadydata during eachwaeep,and since there is signif-
icant potential forconfict misses acrossrigs, daa distibution in main memory can beesry
important on machines with physically distributed memory.

that use egular gids. Thecomputdion to comnunicaion ratio is propottional to for a pob-

Figure 3-15shows the lakdavn of execution time into bsy, waiting at synhronizdion points,
and waiting for data accesses to complete for a particxdgugon of Ocean with 10305030
grids on a 32-processor SGI1i§in2000 mabine As in all our pogramsmapping of pocesses
to processas is not erdrced by the prgram but is left to the systerfhis machine hasew large
per-pocessor seconduyel caches (4MB), so wittofirdimensional aays each prcessos par
tition tends to fit condrtably in its catie The poblem size is lage enoughelative to the am-
ber of ppcessas that the inherent commicdion to computationatio is quite lav. The major
bottlene& is the time spent waiting at ers. Smaller ppblems would stress commication
more, while laiger pioblems and proper data distntion would put more stress on the local
memoy systemWith two-dimensional aays,the story is learly different. Conflict misses ar
frequent,and with data being ditult to place ppropriatey in main memaoy, many of these
misses are not satisfied locally, leading to long latencies as well as contention.
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3.6.2 Barnes-Hut

The galaxy simlation has far more fiegular and ginamically chandng behavior than Ocean.
The algrithm it uses for computingofces on the starthe Barnes-Hut methodks an eficient
hierardiical method for solving the-body problem in O(n log n)time. Recall that the n-bgd
probdem is the poblem of computing the influences thatbodies in a systemxert on one
another.

The Sequential Algorithm

The galaxy simlation proceedswer hundreds of time-gte, each step computing the netde
on every body and therby updating that bods position and otherttaibutes. Recall the insight

Build Tree
Compute
Compute
(:’; Forces moments of cells
o
Q
E
= Update
€ Traverse tree
Properties to compute forces

Figure 3-16Flow of computation in the Barnes-Hut application.

tha force calculation in the Barnes-Hut method is based on: If the magnitude afctiter
between bodies falls offapidly with distance (as it does imayitation),then the d&ct of a lage
group of bodies may bepproximaed by a single equalent bod, if the goup of bodies isdr
enough way from the point at Wich the efect is being ealuated The hierardical gplication
of this insight implies that theather avay the bodies, the Iger the goup that can bepgroxi-
mated by a single body.

To facilitate a hiearchical goproachthe Barnes-Hut atgithm represents the tee-dimensional
space containing the galaxies asee,as bllows. The root of the treeepresents a space cell
containing all bodies in the systeithe tree is built by adding bodies into the initially emutytr
cell, andsubdviding a cell into its eighthildren as soon as it contains more thaxedfirumber
of bodies (here tenYhe result is afioct-tree” whose internal nodes are cells and whoseekea
are individualbodies! Empty cells resulting from a cell subdivision are igrbiThe tee, and
the Barnes-Hut alwithm, is theefore adaptive in that it extends to morevids in egons tha
hawe high body densitiedVhile we use a three-dimensionabplem,Figure 3-17 shows a small

1. An oct-tree is a tree inhich every node has a maximum of eiglitildiren. In two dimensions, a quagir
would be used, in which the maximum number of children is four.
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two-dimensional example domain and therespondingquadtree”for simplicity. The positions
of the bodies ltange across time-gpss, so the tree has to beluilt every time-step.This results
in the overall computational strcture shown in the right hand side eifjure 3-16, with most of
the time being spent in the force calculation phase.

(a) The Spatial Domain (b) Quadtree Representation

Figure 3-17Barnes-Hut: A two-dimensional particle distribution and the corresponding quadtree

The tree is @mvessed once per body to compute the oetdé acting on that bgdThe force-calcu-
lation algorithm for a body starts at the root of the tree and conductsitbeiing test ecursively

for every cell it visits. If the center of mass of the cell is far enougbyafrom the bog, the
entire subtree under that cell ip@oximded by a single body at the center of mass of the cell,
and the drce this center of masgeats on the body computed, Hovever,the center of mass is
not far enoughway, the cell must béopened”and each of its subcells visited. A cell is deter
mined to be far enough away if the following condition is satisfied:

('-j <0, (EQ 3.6)

where| is the length of a side of the calljs the distance of the body from the center of mass of
the cell, and® is a usedefined accuagy parameterf is usually between 0.5 and 1.2). In this
way, a body taveses deeper down those parts of the treielwepresent space that isysically
close to it, and ups distant bodies at a haecty of length scales. Since the expected depth of
the tree iD(log n), and the number of bodies fothigh the tree is ivesed isn, the expected
compleity of the algrithm is O(n log n). Actually it is O(i2 nlog n), since® determines the
number of tree cells touched at each level in a traversal.

Principal Data Structures

Conceptuallythe main data sicture in the @plicaion is the Barnes-Hutae The tree is imple-
mented in both the sequential and parallegmams with two anrays:an aray of bodies and an
array of tree cells. Each body and cell épresented as a sture or ecord The fields for a bog
include its three-dimensional position, velocity and acegil@n,as well as its mass. A cell str
ture also has pointers to ithildren in the tee,and a three-dimensional center-of-masgre is
also a sparde aray of pointers to bodies and one of pointers to cell&nEprocess owns an
equal contiguous chunk of pointers in thesays,which in every time-step are set to point to the
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bodies and cells that are assigned to it in that time-Stepstucture and partitioning of thede
changs across time-steps as the galasghas,the actual bodies and cells assigned twagss
are not contiguous in the body and cell arrays.

Decomposition and Assignment

Ead of the phases within a time-step x@euted in paallel, with global barier syndironization
between phased.he naural unit of decomposition (task) in all phases is aybextept in com-
puting the cell centers of mass, where it is a cell.

Unlike Ocean, Wich has aegular and pedictalbe stiucture of both computation and coromi-
cation,the Barnes-Hutpplicaion presents manyhallengs for efective assignment.ifst, the
non-unifomity of the galaxy implies that the amount abnw per body and the commication
pattens are nouniform, so a good assignment cannot be dised by inspection. Seconthe
distribution of bodies lbanges across time-gis, which means that no static assignment isliik
to work well. Third, since the infrmaion needs indrce calculation fall off with distance equall
in all directions,reducing intgprocess commmicaion demands that partitions be spky con-
tiguous and not biased in sizeverd any one direction. Andofirth, the diferent phases in a
time-stg have different distibutions of work among the bodies/cells, and hencdedint pe-
ferred partitions. Forxample,the work in the update phase is umiin across all bodies, hile
that in the brce calculation phasdearly is not. Another kalleng for good pedrmance is thia
the communication needed among processes is naturally fine-grained and irregular.

We focus our partitioning ffrts on the érce-calculéion phasesince it is by far the most time-
consuming The partitioning is not modified for other phases since (a)wbhehead of doing so
(both in partitioning and in the loss of locality) outweighs the potential teredd (b) similar
patitions are lilely to work well for tree building and moment calculation (though not for the
update phase).

As we hae mentioned earlier in thédnapter,we can use pfiling-based semi-static g#ioning

in this gplication,taking adantage of the fact that although the pele distibution at the end of
the simulation may be adically different from that at the lginning, it evolves slavly with time
does not bang \ery much between two successitime-steps. As we perfn the brce calcula-
tion phase in a time-gtewe recod the work done by eery patticle in that time-step (i.e. count
the number of interactions it computes with other bodies or délisjhen use this evk count as

a measure of theark associated with that gaile in the next time-stepWork counting is ery
cheapsince it only imolves incrementing a local counter when atpémsie) interaction is per
formed Now we need to combine this load balancing method with assignment technidues tha
also abtieve the commanicaion goal: keging partitions contiguous in space and not biased in
size tovard any one directionVe biiefly discuss two tdmiquesthe frst because it ispplicable

to many iregular poblems and we shalkfer to it ajain in Sectior8.7; the second because it is
what our program uses.

The frst tedinique,called othogonal ecursive bisection (ORB), msenes physical locality
patitioning the domain space dutly. The space isecursivey subdivided into two subspaces

with equal cost, using théawe load balancing measyuntil there is one subspace peogess
(seeFigure 3-18@a)). Initially, all processes are associated with the entire domain spaay. Ev
time a space is dided, half the processes associated with it are assigned to each of the subspaces
that result. The Cartesian direction inhich division takes place is usually atteired with suc-
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cessie divisions,and a parallel median finder is used to determinemto split the cuent sub-
spaceA searae binary tree of deptlog pis used to implement ORB. Details of using ORB f
this application can be found in [Sal90].
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Figure 3-18Partitioning schemes for Barnes-Hut: ORB and Costzones.

ORB partitions space dictly by recursive bisection, while costzones partitions thmtéb) shows both the Fartitionin_g of the tree
well as how the resulting space is partitioned by costzones. Note that ORB leads tegulareg(rectangular) partitions than cc
zones.

The second témique, called costanes,takes adantag of the fact that the Barnes-Hut alg
rithm alread/ has a epresentidon of the spatial disitoution of bodies encoded in its treetala
structure Thus,we can partition this existing datawstture itself and obtain the goal of pi&ion-

ing space (sekigure 3-18b)). Here is a high-ieel description. Esty internal cell stores the total
cost associated with all the bodies it contairise total vork or cost in the system iswuiiled
among processes so thaersy process has a contiguous, eqaalge or zone of wrk (for exam-
ple, a total vork of 1000 units would be split among 10 processes so that zone 1-100 units is
assigned to therfit processzone 101-200 to the secqrathd so on)Which cost zone a body in
the tree belongs to can be determined by the total cost of an inardesal of the tree up to tha
body Processesdverse the tree in palel, picking up the bodies that belong in their caste
Details can be found in [SH+95]. Costzones igimeasier to implement than ORB. It also and
yields better werall performance in a shared digss spacemostly because the time spent in the
partitioning phase itself is much smaller, illustrating the impact of extra work.

Orchestration

Orchestréion issues in Barnes-Huéevweal many diferences from Ocean, illusting that @en
applicaions in scientific computing canvewidely diferent behsioral characteistics of achi-
tectural interest.

Spatal Locality : While the shared alless space makes it easy for a process to accessthe par
of the shared tree that it needs in all the computational phases (see $&gtutata distibution
to keg a pocesss assigned bodies and cells in its local main memory is not so easy as in Ocean
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First, data hae to be edistrituted g/namically as assignmentdang across time-sps, which

is expensive Secondthe Imical granulaity of data (a pdicle/cell) is much smaller than the
physical ganulaity of allocation (a pge),and the fact that bodies/cells aretsdly contiguous

in the arays does not mean they are contiguous in physical space or assigned to theosame pr
cess. Fixing these giolems equires aerhauling the data stctures that store bodies and cells:
using sparde arays or lists per prcessthat are modified across time-steparténatelythere is
enough temporal locality in thepglication that data disiioution is not so important in a slealr
addess space @ain unlike Ocean)Also, the vast majority of the cache misses are to data in
other pocessorsassigned partitions gway, so data distbution itself wouldn't help make them
local. We theefore simply distibute pajes of shared data in aund-obin inteteaved manner
among nodes, without attention to which node gets which pages.

While in Ocean long cachddeks impiove local access penimance limited only by pétion
size,here nulti-word cache lmcks help exploit spatial locality only to the extent that reading a
particles displacement or moment datadlves reading seral doube-precision vords of daa.
Very long tanskr ganulaities might cause moredgmenttion than useful mfetch,for the
same reason that data distition at pge ganulaity is difficult: Unlike Ocean, locality of bod-
ies/cells in the data sictures does not nteh that in physical space onhigh assignment is
basedso ftcing data from more than one pele/cell upon a miss may be harmfattrer than
beneficial.

Working Sets andTemporal Locality: The first working set in this pygram contains the da
used to computeofces between a single piate-partide or paticle-cell pair. The inteaction
with the next pdicle or cell in the tavesal will reuse these dat@he second wking set is the
most important to pesfmance It consists of the data encountered in the entire tawedal to
compute thedrce on a single pticle. Because of the ay partitioning is dongthe tavesal to
compute thedrces on the next piele will reuse most of these data. As we go frontiplarto
particle,the composition of this arking set ©ianges slovly. Hovever,the amount of reuse isetr
mendousand the resulting arking set is smallwen though wverall a process accesses eryw
large amount of data inregular ways. Much of the data in thisoaking set is from other pr
cessespatitions, and most of these data are allocated nonkacEtlus, it is the temporal locality
exploited on shared (both local and nonlocal) data that is critical to therparfce of the @pli-
cation, unlike Ocean where it is data distribution.

By the same reasoning that the complexity of therahgm is O(i2 nlog n), the expected size of
this working set is popottional toO(Z; log n), even though thderall memory equirement of
the gplicaion is close to linear in: Fach paicle accesses about thisich data from the tree to
compute the drce on it. The constant of ppotionality is small, being the amount of tda
accessed from each body or cell visited duriogd computation. Since thisorking set fis
comfortaby in modern secondyel cahes,we do not eplicae data in main memgrin Ocean
there were important wrking sets thatigw linealty with the data set sizand we did not alays
expect them to fit in the cache;wever,even there we did not needplicaion in main memor
since if data were distributed appropriately then the data in these working sets were local.

Synchronization: Bariers are used to maintain dependences among bodies and cefls acr
some of the computational phases, such as between building the tree and using it to compute
forces.The unpedictalbe ndure of the dependences makes itdnmore dificult to replace the

barrieis by point-to-point body or cell\el syndronizaion. The small number of baers used

in a time-step is independent of problem size or number of processors.

174 DRAFT: Parallel Computer Architecture 9/10/97



The Parallel Application Case Studies: An In-Depth Look

There is no need for syhconizaion within the brce computation phase itselfhile communi-
caion and sharing fgems in the pplicaion are iregular,they are phase-sittured That is,
while a process reads fiate and cell data from many other processes in dheefcalcultion
phasethe fields of a péicle stiucture that are written in this phase (the acatiens and eloci-
ties) are not the same as those that are read in it (the displacements and Tessis)lace-
ments are written only at the end of the update pleambmasses are not moelifi Howvever,in
other phases, the ggram uses both mutuakelusion with locks and point-to-poinvent syn-
chronizdion with flags in more interestingays than Ocean. In the tree building phaspocess
that is read/ to add a pdicle to a cell must fst obtain nutually exclusive access to the cell, since
other processes may want to read or modify the cell at the sam@&Hhiimés implemented with a
lock per cell.The moment calculation phase is essentially anampwass through the treeofn
the leaes to the wot, computing the moments of cells from those of thieildcen. Rint-to-point
event syntironizaion is implemented usingafjs to ensure that a parent does not read the
moment of its child until that child has been updated by allhiisiren. This is an example of
multiple-producersingle-consumerrgup synéronizdion. There is no synleronizdion within
the update phase.

The work between syrfronizaion points is lage, paticularly in the brce computation and

updde phases, her it is Og“(:)g ng andO(E), respectivelyThe need for locking cells in the

tree-luilding and center-of-mass phases causes tiie between syrtronizdion points in those
phases to be substantially smaller.

Mapping

The iregular naure makes thisgplicaion more dificult to map pe#ctly for network locality in
common netwrks such as meshekhe ORB partitioning scheme mapaywnaurally to a typer-
cube topolgy (discussed ifChgpter10), but not so well to a mesh or other leghly intercon-
nected netwark. This popety does not hold for costzones fi@ning, which naurally maps to a
one-dimensional aay of processas but does not easily guarantee éggkcomnunicaion local
even in such a network.

In summay, the Barnes-Hutplicdion has iregular,fine-grainedtime-varying comnunication

and data accesstpams that are becoming ireasingy prevalent @en in scientific computing as
we try to model more complex i@al phenomena. Successful partitioning techniques foeit ar
not obvious by inspection of the cqdend equire the use of insights from theication
domain.These insights allow us tav@d using fully dynamic assignment methods such as task
queues and stealing.

Figure 3-19 shows the l@akdavns of execution time for this gplicaion. Load balance is quite

good with a static partitioning of theray of bodies to pycessorsprecisey because there is little
relaionship between their location in thearand in physical space. Wever,the data access

cost is high, since there is a lot of inherent atiflzantual comrmanicaion. Semi-sttic, costones
partitioning reduces this data access overhead substantially without compromising load balance

3.6.3 Raytrace

Recall that in ay tracing eys are shot through the pixels in an gaalane into a tlee-dimen-
sional sceneand the paths of thays traced as they bounce around to compute a color and opac-
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Figure 3-19Execution time breakdown for Barnes-Hut with 512K bodies on the Origin2000.

The particular static assignment of bodies used is qanitéomizedso gven the lage number of bodieshative to pocesscs the
workload e/ens out due to the law of g& rumbes. The bigyer poblem with the static assignment is that because itféstifel
randomizd the péicles assigned to a processor are not clogetier in space so the comanicaion to computationatio is muc
larger This is why data wait time is smaller in the semi-staticlseme If we had assigned contiguous areas of spaceoto
cesses stially, data wait time would be small but load imbalance and hencérsyrizaion wait time would be lgre. Even with
the current static assignment, there is no guarantee that the assignment will remain load balanced as the galaxy evolves ¢

ity for the coresponding pixelsThe algrithm uses a hiardical representdon of space called
a Hiemrchical Uniform Grid (HUG), which is similar in stucture to the octree used by the Bar
nes-Hut aplication. The root of the treeepresents the entire space enclosing the s@erkethe
leawes hold a linked list of the objectiitives that fall in them (the maximum number afipr

tives per leaf is also defined by the uséhe hieardchical gid or tree makes it &tient to skip
empty regions of space when tracing a ray, and quickly find the next interesting cell.

Sequential Algorithm

For a dven vievpoint, the sequential atgithm fires one ay into the scene througlvery pixel in
the imaye planeThese initial ays are called pmary rays. At the fist object that aay encountes
(found by tavessing the hieatrchical uniform grid), it is first reflected tavard every light souce
to determine whether it is in shadow from that light seulf it isn’t, the contibution of the light
souce to its color and brightness is computéte my is also eflected from andefracted
through the object agparopriate Each eflection and efraction spawns a newvay, which undef
goes the same pcedue recursivey for every object that it encounter$hus,each pimary ray
generges a tree ofays. Rays are taminated either when they lga the volume enclosing the
scene or according to some udefined citerion (such as the maximum number o¥dks
allowed in a ay tree).Ray tracing,and computer rgphics in gneral,affords seeral tradeoffs
between &ecution time and inge quality and many algrithmic optimizations heae been deel-
oped to improve performance without compromising image quality much.

Decomposition and Assignment
There are two ntral goproates to exploiting parallelism iray tracing One is to divide the

space and hence the objects in the scene amonggsesand hae a process compute the inter
actions for ays that occur within its spac€éhe unit of decomposition here is a subsp¥deen a

ray leaves a pocesss subspacet will be handled by the next process whose subspace isenter

This is called &cene-orientedpproad. The altenate,ray-orientedapproad is to divide piels
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in the imaye plane among processes. A procesespansite for the eys that are fed though
its assigned pids, and bllows a my in its path through the entire scegsemputing the interc-
tions of the entireay tree vhich that sy generdes.The unit of decomposition here is arpary
ray. It can be made finer by allowing fifent processes to procesgs generaed by the same
primaty ray (i.e. from the sameay tree) if necessgr The scene-orientedoproad preserves
more locality in the scene ti since a process only touches the scene data that are in its sub-
space and theys that enter that subspace wéwer,the ay-oliented @proad is nuch easier to
implement with low gerheadpaticularly starting from a sequentialggram,since ays can be
processed ingendenty without syntironizaion and the scene data aead-only This piogram
therefoe uses aay-oliented pproat. The dgree of concueng for an-by-n plane of pixels is
O(r?), and is usually ample.

Unfortunately, a static subblock partitioning of the image plane would not be load balanced.
Rays from different parts of the image plane might encounter very different numbers of reflec-
tions and hence very different amounts of work. The distribution of work is highly unpredictable,
so we use a distributed task queueing system (one queue per processor) with task stealing fi
load balancing.

Consider communication. Since the scene data are read-only, there is no inherent communicatic
on these data. If we replicated the entire scene on every node, there would be no communicatic
except due to task stealing. However this approach does not allow us to render a scene larger th
what fits in a single processor’'s memory. Other than task stealing, communication is generatec
because onlyl/p of the scene is allocated locally and a process accesses the scene widely ani
unpredictably. To reduce this artifactual communication, we would like processes to reuse sceni
data as much as possible, rather than access the entire scene randomly. For this, we can expl
spatial coherence in ray tracing: Because of the way light is reflected and refracted, rays that pas
through adjacent pixels from the same viewpoint are likely to traverse similar parts of the scene
and be reflected in similar ways. This suggests that we should use domain decomposition on th
image plane to assign pixels to task queues initially. Since the adjacency or spatial coherence ¢
rays works in all directions in the image plane, block-oriented decomposition works well. This
also reduces the communication of image pixels themselves.

Given p processors, the image plane is partitioned ntectangular blocks of size as close to
equal as possible. Every image block or partition is further subdivided into fixed sized square
imagetiles, which are the units of task granularity and stealing (see FigRédor a four-pro-

cess example). These tile tasks are initially inserted into the task queue of the processor that
assigned that block. A processor ray traces the tiles in its block in scan-line order. When it is
done with its block, it steals tile tasks from other processors that are still busy. The choice of tile
size is a compromise between preserving locality and reducing the number of accesses to oth
processors’ queues, both of which reduce communication, and keeping the task size sma
enough to ensure good load balance. We could also initially assign tiles to processes in an intel
leaved manner in both dimensions (callescatter decompositigrio improve load balance in

the initial assignment.

Orchestration

Given the dove decomposition and assignment, let us examine spatial lptatditgoral locality
and synchronization.
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A tile, the unit
of task stealing

A block, the unit
of partitioning

Figure 3-20Image plane partitioning in Raytrace for four processors.

Spatial Locality: Most of the shared data accesses are to the scene data. However, because of
changing viewpoints and the fact that rays bounce about unpredictably, it is impossible to divide
the scene into parts that are each accessed only (or even dominantly) by a single process. Also,
the scene data structures are naturally small and linked together with pointers, so it is very diffi-
cult to distribute them among memories at the granularity of pages. We therefore resort to using
a round-robin layout of the pages that hold scene data, to reduce contention. Image data are
small, and we try to allocate the few pages they fall on in different memories as well. The sub-
block partitioning described above preserves spatial locality at cache block granularity in the
image plane quite well, though it can lead to some false sharing at tile boundaries, particularly
with task stealing. A strip decomposition in rows of the image plane would be better from the
viewpoint of spatial locality, but would not exploit spatial coherence in the scene as well. Spatial
locality on scene data is not very high, and does not improve with larger scenes.

Temporal Locality: Because of the read-only nature of the scene data, if there were unlimited
capacity for replication then only the first reference to a nonlocally allocated datum would cause
communication. With finite replication capacity, on the other hand, data may be replaced and
have to be recommunicated. The domain decomposition and spatial coherence methods
described earlier enhance temporal locality on scene data and reduce the sizes of the working
sets. However, since the reference patterns are so unpredictable due to the bouncing of rays,
working sets are relatively large and ill-defined. Note that most of the scene data accessed and
hence the working sets are likely to be nonlocal. Nonetheless, this shared address space program
does not replicate data in main memory: The working sets are not sharp and replication in main
memory has a cost, so it is unclear that the benefits outweigh the overheads.

Synchronization and Granularity: There is only a single beer after an entire scene isn-
dered and bedre it is displged Locks are used to protect task queues for task stealidgalso
for some globalariales that tad statistics for the mgram.The work between syrtwronization
points is the work associated with tiles of rays, which is usually quite large.

Mapping

SinceRaytrace has ey unpredictalte access and commicdion patems to scene da, the com-
municdion is all but impossible to mapfettively in this shared attess spaceersion.The fact
that the initial assignment ofys partitions the inge into a two-dimensionalrigl of blocks, it
would be ntural to map to a two-dimensional mesh netwbut the effect is not lilkely to be
large.
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Figure 3-21Execution time breakdowns for Raytrace with the balls data set on the Origin2000.

Task stealing islearly very important for balancing the atkload (and hence reducing symonizdion wait time) in this highi
unpredictable application.

3.6.4

In summay, this gplicaion tends to hae laige working sets andelatively poor spatial locality
but a low inherent comumicaion to computationatio. Figure 3-21 shows the krakdavn of
execution time for the balls data set, illaitng the importance of task stealing in reducing load
imbalanceThe tra comnunicaion and synbronizaion incured as a result is wellovthwhile

Data Mining

A key difference in the data miningpplicaion from the pevious ones is that the data being
accessed and manipulated typically reside on disler than in memar It is very important to
reduce the number of disk accesses, since their costyifiigh, and also to reduce the conten-
tion for a disk controller by different processors.

Recall the basic insight used in association mining from Se2tlA: If an itemset of siz& is
large,then all subsets of that itemset must also tgeldfor illust@ation, consider a dabase in
which there are fie items—A, B C, D, and E—of vhich one or more may be present in aipar
ular transactionThe items within a transaction araitegraphicaly soted Consider b, the list
of large itemsets of size Zhis list might be {AB AC, AD, BC, BD, CD, DE}. The itemsets
within L, are also leicographicaly soted Given this Ly, the list of itemsets that are candiea
for membership in 4 are obtained by pesfming a“join” opegtion on the itemsets inJ.i.e.
taking pairs of itemsets in,lthat share a commorrdt item (say AB an@C), and combining
them into a Igicographicaly sorted 3-itemset (here ABCljhe resulting candidate listz@h this
case is {ABCABD, ACD, BCD}. Of these itemsets ingCsome may actually occur with enough
frequeny to be placed in 4, and so on. In@neralthe join to obtain from L,_; finds pairs of
itemsets in k_; whose fistk-2 items are the samand combines them toee a new itemdr
Cy. Itemsets of sizk-1that hae commork-2 sized pefixes are said twfm an equialence tass
(e.g {AB, AC, AD}, {BC, BD}, {CD} and {DE} in the example aowe). Only itemsets in the
samek-2 equivalence class need to be consideregttver to 6rm G, from L,._;, which greatly
reduces the number of pairwise itemset comparisons we need to do to detgrmine C
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Sequential Algorithm

A simple sequential method for association mining isrit fiaveise the dataset andaod the
frequencies of all itemsets of size ptieis determining L. From Ly, we can construct the candi-
dae list G, and then tverse the datasegain to find vhich entries of G are lage and should be
in L,. From Ly, we can construct{£and tavesse the dataset to determing &nd so on until &
hawe found L. While this method is simpjét requires reading all transactions in theatmse
from diskk times, which is expensive.

The lkey goals in a sequential algthm are to reduce the amount abrk done to compute candi-
dae lists G from lists of lage itemsets |.1, and especially to reduce the number of timea da
must be read from disk in determining the counts of itemsets in a candidate(listd&temine
which itemsets should be in). We hare seen that equalence classes can be used tiae the
first goal. In &ct,they can be used to construct a method thaitees both goals tgether The
idea is to tansfom the way in which the data are stored in thet@aaseInstead of storing &ns-
actions in thedrm {T,, A, B, D, ...}wher T, is the transaction identifier aAd B, D are items
in the tansaction—w can ke in the déabase ecods of the érm {IS,, T1,T2,T3, ...}, where
IS, is an itemset an@ll, T2 etc. are transactions that contain that iteni$et.is, there is a da-
base ecod per itemsetather than per transaction. If thedaritemsets of size k-1 {l;) that ae
in the samek-2 equivalence class are idenéfl, then computing the candidate list €quires
only examining all pairs of these itemsets. If each itemset has its list of transattdmsdato it,
as in the bove representationthen the size of each resulting itemset jnc@&n be computed a
the same time as identifying thg @emset itself from a pair of)l; itemsets, by computing the
intersection of the transactions in their lists.

For example,suppose {AB1, 3, 5, 8, 9} and {&, 2, 3, 4, 8, 10} are lge 2-itemsets in the same
1l-equivalence class (they each start wiflh then the list of transactions that contain itenA&Et

is {3, 8}, so the occuence count of itemset ABC is twd/ha this means is that once theaa
base is transposed and the 1-eaj@ince classes idenéfi, the rest of the computation for a sin-
gle 1l-equialence class can be done to completion (i.e. afeld-itemsets found) befe
consideing any data from other 1-eguaience classes. If a 1-egalence class fits in main mem-
ory, then after the transposition of thaatemse a iyen data item needs to be read from disly onl
once, greatly reducing the number of expensive 1/O accesses.

Decomposition and Assignment

The two sequential methods alsofelifin their paallelization, with the latter method kng
advantags in this respect as wello paallelize the fist methodwe could fist divide the dia-
base among pressas. At each sig a processor éverses only its local portion of the tddase
to determine partial occrence counts for the candidate itemsets, imegmo comnanicaion or
nonlocal disk accesses in this phaBlee partial counts are then rged into global counts to
detemine which of the candidates are d@ Thus,in parallel this methodequires not only ml-
tiple passeswer the déabase but alsoequires inteprocessor comomicaion and synbroniza-
tion at the end of every pass.

In the second methodhe equialence classes that helped the sequential method reduce disk
accesses areery useful for paallelization as well. Since the computation on each 1liedence
class is independent of the computation on any pétecan simply divide up the 1-egalence
classes among processesieh can thereafter proceed im#mdentlywithout comnunicaion or
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synchronizéon. The itemset lists (in theansfomed brma) coresponding to an equlence
class can be stored on the local disk of the processitthwthe equialence class is assignesb
there is no need for remote disk access after this point either. As in the sequentitralgince
ead process can complete therkwon one of its assigned egaience classes lwé pioceeding

to the next onehopefully each item from the localtdbase should be read only ongbe issue

is ensuring a load balanced assignment ofvadgrice classes to processes. A simple mairic f
load balance is to assign egalence classes based on the number of initial entries in them. Ho
ever,as the computation unfolds to compute k-itemsets, the amoumtriofissdetermined mer
closey by the number of Ige itemsets that areegerded at each step. Heuristic measures tha
estimade this or some other mor@ropride work metric can be used as well. Otherwisae
may have to lesot to dynamic tasking and task stealimdnich can compromise uath of the sim-
plicity of this method (&. that once processes are assigned their initiaValguice classes the
do not have to communicate, synchronize, or perform remote disk access).

The first step in thispproachof couse,is to compute the 1-equlence classes and thega2-
itemsets in them, as a starting point for the parallel assignifeeobtmpute the Ige 2-itemsets,
we are better off using theiginal form of the déabase ather than the ansfomed fbrm, so we

do not tansfom the déabase yet (seExercise3.12). Every processwees over the tansactions

in its local portion of the dabaseand for each pair of items in a transaction increments a local
counter for that item pair (the local counts can be maintained as a two-dimensionatiapper
gular aray, with the indices being items). It is easy to compute 2-itemset couatdlgirather
than frst make a pass to compute 1-itemset counts, construct the ligjeofldemsets, and then
malke another pass to compute 2-itemset courite. local